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Abstract—Outsourcing data and computation to cloud server
provides a cost-effective way to support large scale data storage
and query processing. However, due to security and privacy
concerns, sensitive data (e.g., medical records) need to be pro-
tected from the cloud server and other unauthorized users. One
approach is to outsource encrypted data to the cloud server
and have the cloud server perform query processing on the
encrypted data only. It remains a challenging task to support
various queries over encrypted data in a secure and efficient
way such that the cloud server does not gain any knowledge
about the data, query, and query result. In this paper, we
study the problem of secure skyline queries over encrypted
data. The skyline query is particularly important for multi-
criteria decision making but also presents significant challenges
due to its complex computations. We propose a fully secure
skyline query protocol on data encrypted using semantically-
secure encryption. As a key subroutine, we present a new secure
dominance protocol, which can be also used as a building block
for other queries. Finally, we provide both serial and parallelized
implementations and empirically study the protocols in terms
of efficiency and scalability under different parameter settings,
verifying the feasibility of our proposed solutions.

I. Introduction

As an emerging computing paradigm, cloud computing
attracts increasing attention from both research and industry
communities. Outsourcing data and computation to cloud
server provides a cost-effective way to support large scale data
storage and query processing. However, due to security and
privacy concerns, sensitive data needs be protected from the
cloud server as well as other unauthorized users.

A common approach to protect the confidentiality of out-
sourced data is to encrypt the data (e.g., [14], [31]). To protect
the confidentiality of the query from cloud server, authorized
clients also send encrypted queries to the cloud server. Figure
1 illustrates our problem scenario of secure query processing
over encrypted data in the cloud. The data owner outsources
their encrypted data to the cloud server. The cloud server
processes encrypted queries from the client on the encrypted
data and returns the query result to the client. During the query
processing, the cloud server should not gain any knowledge
about the data, data patterns, query, and query result.

Fully homomorphic encryption schemes [14] ensure strong
security while enabling arbitrary computations on the en-
crypted data, however, the computation cost is prohibitive
in practice. Trusted hardware such as the latest Intel’s Soft-
ware Guard Extensions (SGX) brings a promising alternative,
however still has limitations in its security guarantees [9].
Many techniques (e.g., [17], [37]) have been proposed to

support specific queries or computations on encrypted data
with varying degrees of security guarantee and efficiency (e.g.,
by weaker encryptions). Focusing on similarity search, secure
k-nearest neighbor (kNN) queries, which return k most similar
(closest) records given a query record, have been extensively
studied [11], [20], [39], [41].

Fig. 1: Secure similarity queries.

In this paper, we focus on the problem of secure skyline
queries on encrypted data, another type of similarity search
important for multi-criteria decision making. The skyline or
Pareto of a multi-dimensional dataset given a query point
consists of the data points that are not dominated by other
points. A data point dominates another if it is closer to the
query point in at least one dimension and at least as close to
the query point in every other dimension. The skyline query is
particularly useful for selecting similar (or best) records when
a single aggregated distance metric with all dimensions is hard
to define. The assumption of kNN queries is that the relative
weights of the attributes are known in advance, so that a single
similarity metric can be computed between a pair of records
aggregating the similarity between all attribute pairs. However,
this assumption does not always hold in practical applications.
In many scenarios, it is desirable to retrieve similar records
considering all possible relative weights of the attributes (e.g.,
considering only one attribute, or an arbitrary combination
of attributes), which is essentially the skyline or the “pareto-
similar” records.

Motivating Example. Consider a hospital who wishes to
outsource its electronic health records to the cloud and the
data is encrypted to ensure data confidentiality. Let P denote
a sample heart disease dataset with attributes ID, age, trestbps
(resting blood pressure). We sampled four patient records
p1, ...,p4 from the heart disease dataset of UCI machine
learning repository [22] as shown in Table I(a) and Figure
2. Consider a physician who is treating a heart disease patient
q = (41, 125) and wishes to retrieve similar patients in order
to enhance and personalize the treatment for patient q. While
it is unclear how to define the attribute weights for kNN
queries (p1 is the nearest if only age is considered while
p2, p3 are the nearest if only trestbps is considered), skyline
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provides all pareto-similar records that are not dominated
by any other records. Given the query q, we can map the
data points to a new space with q as the origin and the
distance to q as the mapping function. The mapped records
ti[ j] = |pi[ j] − q[ j]| + q[ j] on each dimension j are shown in
Table I(b) and also in Figure 2. It is easy to see that t1 and t2

are skyline in the mapped space, which means p1 and p2 are
skyline with respect to query q.

Our goal is for the cloud server to compute the skyline
query given q on the encrypted data without revealing the
data, the query q, the final result set {p1, p2}, as well as any
intermediate result (e.g., t2 dominates t4) to the cloud. We note
that skyline computation (with query point at the origin) is a
special case of skyline queries. Our protocol can be also used
for skyline computation.

TABLE I: Sample of heart disease dataset.

(a) Original data.

ID age trestbps
p1 40 140
p2 39 120
p3 45 130
p4 37 140

(b) Mapped Data.

ID age trestbps
t1 42 140
t2 43 130
t3 45 130
t4 45 140

35 40 45
110

120

130

140

age

trestbps

q

p4 p1

p2

t1 t4

t2 p3/t3

Fig. 2: Dynamic skyline query.

Challenges. Designing a fully secure protocol for skyline
queries over encrypted data presents significant challenges due
to the complex comparisons and computations. Let P denotes a
set of n tuples p1, ...,pn with m attributes and q denotes input
query tuple. In kNN queries, we only need to compute the
distances between each tuple pi and the query tuple q and then
choose the k tuples corresponding to the k smallest distances.
In skyline queries, for each tuple pi, we need to compare it
with all other tuples to check dominance. For each comparison
between two tuples pa and pb, we need to compare all their m
attributes and for comparison of each attribute p[ j], there are
three different outputs, i.e., pa[ j] < (=, >) pb[ j]. Therefore,
there are 3m different outputs for each comparison between
two tuples, based on which we need to determine if one tuple
dominates the other.

Such complex comparisons and computations require more
complex protocol design in order to carry out the computations
on the encrypted data given an encryption scheme with se-
mantic security (instead of weaker order-preserving or other
property-preserving encryptions). In addition, the extensive
intermediate result means more indirect information about the
data can be potentially revealed (e.g., which tuple dominates
which other, whether there are duplicate tuples or equivalent
attribute values) even if the exact data is protected. This makes
it challenging to design a fully secure skyline query protocol

in which the cloud should not gain any knowledge about the
data including indirect data patterns.

Contributions. We summarize our contributions as follows.

• We study the secure skyline problem on encrypted data
with semantic security for the first time. We assume
the data is encrypted using the Paillier cryptosystem
which provides semantic security and is partially ho-
momorphic.

• We propose a fully secure dominance protocol, which
can be used as a building block for skyline queries as
well as other queries, e.g., reverse skyline queries [10]
and k-skyband queries [32].

• We present two secure skyline query protocols. The
first one, served as a basic and efficient solution,
leaks some indirect data patterns to the cloud server.
The second one is fully secure and ensures that the
cloud gains no knowledge about the data including
indirect patterns. The proposed protocols exploit the
partial (additive) homomorphism as well as novel
permutation and perturbation techniques to ensure the
correct result is computed while guaranteeing privacy.

• We provide security and complexity analysis of the
proposed protocols. We also provide a complete im-
plementation including both serial and parallelized
versions which can be deployed in practical settings.
We empirically study the efficiency and scalability
of the implementations under different parameter set-
tings, verifying the feasibility of our proposed solu-
tions.

Organization. The rest of the paper is organized as follows.
Section II presents the related work. Section III introduces
background definitions as well as our problem setting. The
security subprotocols for general functions that will be used
in our secure skyline protocol are introduced in Section IV.
The key subroutine of secure skyline protocols, secure domi-
nance protocol, is shown in Section V. The complete secure
skyline protocols are presented in Section VI. We report the
experimental results and findings in Section VII. Section VIII
concludes the paper.

II. RelatedWork

Skyline. The skyline computation problem was first studied
in computational geometry field [3], [25] where they focused
on worst-case time complexity. [23], [29] proposed output-
sensitive algorithms achieving O(nlogk) in worst-case where
k is the number of skyline points which is far less than n in
general.

Since the introduction of the skyline operator by Börzsönyi
et al. [4], skyline has been extensively studied in the database
field. Kossmann et al. [24] studied the progressive algorithm
for skyline queries. Different variants of the skyline problem
have been studied (e.g., subspace skyline [7], uncertain skyline
[34] [30], group-based skyline [28], [26]).

Secure query processing on encrypted data. Fully homomor-
phic encryption schemes [14] enable arbitrary computations on
encrypted data. Even though it is shown that [14] we can build
such encryption schemes with polynomial time, they remain
far from practical even with the state of the art implementations
[18].
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Many techniques (e.g., [17], [37]) have been proposed to
support specific queries or computations on encrypted data
with varying degrees of security guarantee and efficiency (e.g.,
by weaker encryptions). We are not aware of any formal work
on secure skyline queries over encrypted data with semantic
security. Bothe et al. [5] and their demo version [6] illustrated
an approach about skyline queries on so-called “encrypted”
data without any formal security guarantee. Another work [8]
studied the verification of skyline query result returned by an
untrusted cloud server.

The closely related work is secure kNN queries [11], [19],
[20], [33], [35], [39], [41], [42] which we discuss in more
detail here. Wong et al. [39] proposed a new encryption
scheme called asymmetric scalar-product-preserving encryp-
tion. In their work, data and query are encrypted using slightly
different encryption schemes and all clients know the private
key. Hu et al. [20] proposed a method based on provably
secure privacy homomorphism encryption scheme. However,
both schemes are vulnerable to the chosen-plaintext attacks
as illustrated by Yao et al. [41]. Yao et al. [41] proposed
a new method based on secure Voronoi diagram. Instead of
asking the cloud server to retrieve the exact kNN result, their
method retrieve a relevant encrypted partition E(R) for E(Q)
such that R is guaranteed to contain the kNN of Q. Hashem et
al. [19] identified the challenges in preserving user privacy for
group nearest neighbor queries and provided a comprehensive
solution to this problem. Yi et al. [42] proposed solutions
for secure kNN queries based on oblivious transfer paradigm.
Recently, Elmehdwi et al. [11] proposed a secure kNN query
protocol on data encrypted using Paillier cryptosystem that
ensures data privacy and query privacy, as well as low (or
no) computation overhead on client and data owner using two
non-colluding cloud servers. Our work follows this setting and
addresses skyline queries.

Other works studied kNN queries in the secure multi-party
computation (SMC) setting [35] (data is distributed between
two parties who want to cooperatively compute the answers
without revealing to each other their private data), or private
information retrieval (PIR) setting [33] (query is private while
data is public), which are different from our settings.

Secure Multi-party Computation (SMC). SMC was first
proposed by Yao [40] for two-party setting and then extended
by Goldreich et al. [16] to multi-party setting. SMC refers to
the problem where a set of parties with private inputs wish
to compute some joint function of their inputs. There are
techniques such as garbled circuits [21] and secret sharing
[2] that can be used for SMC. In this paper, all protocols
assume a two-party setting, but different from the traditional
SMC setting. Namely, we have C1 with encrypted input and
C2 with the private key sk. The goal is for C1 to obtain an
encrypted result of a function on the input without disclosing
the original input to either C1 or C2.

III. Preliminaries and Problem Definitions

In this section, we first illustrate some background knowl-
edge on skyline computation and dynamic skyline query, and
then describe the security model we use in this paper. For
references, a summary of notations is given in Table II.

TABLE II: The summary of notations.

Notation Definition
P dataset of n points/tuples/records

pi[ j] the jth attribute of pi
q query tuple of client
n number of points in P
m number of dimensions
k number of skyline
l number of bits
K key size

pk/sk public/private key
�a� encrypted vector of the individual bits of a
â binary bit

(a)
(i)
B the ith bit of binary number a

A. Skyline Definitions

Definition 1: (Skyline). Given a dataset P = {p1, ...,pn} in
m-dimensional space. Let pa and pb be two different points in
P, we say pa dominates pb, denoted by pa ≺ pb, if for all j,
pa[ j] ≤ pb[ j], and for at least one j, pa[ j] < pb[ j], where pi[ j]
is the jth dimension of pi and 1 ≤ j ≤ m. The skyline points
are those points that are not dominated by any other point in
P.

Definition 2: (Dynamic Skyline Query) [10]. Given a
dataset P = {p1, ...,pn} and a query point q in m-dimensional
space. Let pa and pb be two different points in P, we say pa
dynamically dominates pb with regard to the query point q,
denoted by pa ≺ pb, if for all j, |pa[ j] − q[ j]| ≤ |pb[ j] − q[ j]|,
and for at least one j, |pa[ j] − q[ j]| < |pb[ j] − q[ j]|, where
pi[ j] is the jth dimension of pi and 1 ≤ j ≤ m. The skyline
points are those points that are not dynamically dominated by
any other point in P.

The traditional skyline definition is a special case of dynamic
skyline query in which the query point is the origin. On the
other hand, dynamic skyline query is equivalent to traditional
skyline computation if we map the points to a new space with
the query point q as the origin and the absolute distances to q
as mapping functions. So the protocols we will present in the
paper also work for traditional skyline computation (without
an explicit query point).

Example 1: Consider Table I and Figure 2 as a running
example. Given data points p1 to p4 and query point q, the
mapped data points are computed as ti[ j] = |pi[ j]−q[ j]|+q[ j].
We see that t1, t2 are the skyline in the mapped space, and
p1, p2 are the skyline with respect to query q in the original
space.

B. Skyline Computation

Skyline computation has been extensively studied as we
discussed in Section 2. We illustrate an iterative skyline
computation algorithm (Algorithm 1) which will be used
as the basis of our secure skyline protocol. We note that
this is not the most efficient algorithm to compute skyline
for plaintext compared to the divide-and-conquer algorithm
[25]. We construct our secure skyline protocol based on this
algorithm for two reasons: 1) the divide-and-conquer approach
is less suitable if not impossible for a secure implementation
compared to the iterative approach, 2) the performance of the
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divide-and-conquer algorithm deteriorate with the “curse of
dimensionality”.

Algorithm 1: Skyline Computation.

input : A dataset P and a query q.
output: Skyline of P.

1 for i = 1 to n do
2 for j = 1 to m do
3 ti[ j] = |pi[ j] − q[ j]|;
4 while the dataset T is not empty do
5 for i = 1 to size of dataset T do
6 S (ti) =

∑m
j=1 ti[ j];

7 choose the tuple tmin with smallest S (ti) as a skyline;
8 add corresponding tuple pmin to the skyline pool;
9 delete those tuples dominated by tmin from T ;

10 delete tuple tmin from T ;

11 return skyline pool;

The general idea of Algorithm 1 is to first map the data
points to the new space with the query point as origin (Lines
1-3). Given the new data points, it computes the sum of all
attributes for each tuple S (ti) (Line 6) and chooses the tuple
tmin with smallest S (ti) as a skyline because no other tuples can
dominate it. It then deletes those tuples dominated by tmin. The
algorithm repeats this process for the remaining tuples until an
empty dataset T is reached.

Example 2: Given the mapped data points t1, ..., t4, we
begin by computing the attribute sum for each tuple as
S (t1) = 16, S (t2) = 7, S (t3) = 9, and S (t4) = 19. We choose
the tuple with smallest S (ti), i.e., t2, as a skyline tuple, delete
t2 from dataset T and add p2 to the skyline pool. We then
delete tuples t3 and t4 from T because they are dominated
by t2. Now, there is only t1 in T . We add p1 to the skyline
pool. After deleting t1 from T , T is empty and the algorithm
terminates. p1 and p2 in the skyline pool are returned as the
query result.

C. Problem Setting

We now describe our problem setting for secure skyline
queries over encrypted data. Consider a data owner (e.g.,
hospital, CDC) with a dataset P. Before outsourcing the
data, the data owner encrypts each attribute of each record
pi[ j] using a semantically secure public-key cryptosystem (we
employ the Pailliar cryptosystem [31] as explained later in the
section). We use pk and sk to denote the public key and private
key, respectively. Data owner sends Epk(pi[ j]) for i = 1, ..., n
and j = 1, ...,m to cloud server C1.

Epk(P )Epk(q)

sk

C1 :

C2 :
pk, sk

Epk(P ), Epk(q), pk
P, pk, sk

Data owner :Client :
q, pk

partial skyline result

partial skyline result

Fig. 3: Overview of protocol setting.

Consider an authorized client (e.g., physician) who wishes
to query the skyline tuples corresponding to query tuple q =

(q[1], ...,q[m]). In order to protect the sensitive query tuple,
the client uses the same public key pk to encrypt the query
tuple and sends Epk(q) = (Epk(q[1]), ..., Epk(q[m])) to cloud
server C1.

Our goal is to enable the cloud server to compute and
return the skyline to the client without learning any information
about the data and the query. In addition to guaranteeing the
correctness of the result and the efficiency of the computation,
the computation should require no or minimal interaction from
the client or the data owner for practicality. To achieve this, we
assume there is an additional non-colluding cloud server, C2,
which will hold the private key sk shared by the data owner
and assist with the computation. This way, the data owner does
not need to participate in any computation. The client also does
not need to participate in any computation except combining
the partial result from C1 and C2. An overview of the protocol
setting is shown in Figure 3.

D. Security Model

Adversary Model. We adopt the semi-honest adversary model
in our study. In any multi-party computation setting, a semi-
honest party correctly follows the protocol specification, yet
attempts to learn additional information by analyzing the
transcript of messages received during the execution. By semi-
honest model, this work implicitly assumes that the two cloud
servers do not collude.

There are two main reasons to adopt the semi-honest
adversary model in our study. First, developing protocols under
the semi-honest setting is an important first step towards
constructing protocols with stronger security guarantees [21].
Using zero-knowledge proofs [13], these protocols can be
transformed into secure protocols under the malicious model.
Second, the semi-honest model is realistic in current cloud
market. C1 and C2 are assumed to be two cloud servers, which
are legitimate, well-known companies (e.g., Amazon, Google,
and Microsoft). A collusion between them is highly unlikely.
Therefore, following the work done in [11], [27], [43], we also
adopt the semi-honest adversary model for this paper.

Desired Privacy Properties. Our security goal is to protect the
data and the query as well as the query result from the cloud
servers. We summarize the desired privacy properties below.
After the execution of the entire protocol, the following should
be achieved.

• Data Privacy. Cloud servers C1 and C2 know nothing
about the exact data except the size pattern, the client
knows nothing about the dataset except the skyline
query result.

• Data Pattern Privacy. Cloud servers C1 and C2

know nothing about the data patterns (indirect data
knowledge) due to intermediate result, e.g., which
tuple dominates which other tuple.

• Query Privacy. Data owner, cloud servers C1 and C2

know nothing about the query tuple q.
• Result Privacy. Cloud servers C1 and C2 know noth-

ing about the query result, e.g., which tuples are in
the skyline result.

Security Definition in the Semi-honest Model. Considering
the privacy properties above, we adopt the formal security
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definition from the multi-party computation setting under the
semi-honest model [15]. Intuitively, a protocol is secure if
whatever can be computed by a party participating in the
protocol can be computed based on its input and output
only. This is formalized according to the simulation paradigm.
Loosely speaking, we require that a party’s view in a protocol
execution to be simulative given only its input and output. This
then implies that the parties learn nothing from the protocol
execution. We omit the definition due to the limited space, for
the detailed and strict definition, please see [15].

Theorem 1: Composition Theorem [15]. If a protocol
consists of subprotocols, the protocol is secure as long as the
subprotocols are secure and all the intermediate results are
random or pseudo-random.

In this work, the proposed secure skyline protocols are con-
structed based on a sequential composition of subprotocols.
To formally prove the security under the semi-honest model,
according to the composition theorem given in Theorem 1, one
needs to show that the simulated view of each subprotocol was
computationally indistinguishable from the actual execution
view and the protocol produces random or pseudo-random
shares as intermediate results.

E. Paillier Cryptosystem

We use the Paillier cryptosystem [31] as the encryption
scheme in this paper and briefly describe Paillier’s additive
homomorphic properties which will be used in our protocols.

• Homomorphic addition of plaintexts:

Dsk(Epk(a) × Epk(b) mod N2) = (a + b) mod N

• Homomorphic multiplication of plaintexts:

Dsk(Epk(a)b mod N2) = a × b mod N

IV. Basic Security Subprotocols

In this section, we present a set of secure subprotocols for
computing basic functions on encrypted data that will be used
to construct our secure skyline query protocol. All protocols
assume a two-party setting, namely, C1 with encrypted input
and C2 with the private key sk as shown in Figure 3. The goal
is for C1 to obtain an encrypted result of a function on the
input without disclosing the original input to either C1 or C2.
We note that this is different from the traditional two-party
secure computation setting with techniques such as garbled
circuits [21] where each party holds a private input and they
wish to compute a function of the inputs. For each function, we
describe the input and output, present our proposed protocol
or provide a reference if existing solutions are available.
Due to limited space, we omit the security proof which can
be derived by the simulation and composition theorem in a
straightforward way.

Secure Multiplication (SM). Assume a cloud server C1 with
encrypted input Epk(a) and Epk(b), and a cloud server C2 with
the private key sk, where a, b are two numbers not known to C1

and C2. The Secure Multiplication (SM) protocol [11] (based
on the additively homomorphic property of Paillier) securely
computes encrypted result of multiplication of a, b, Epk(a×b),
such that only C1 knows Epk(a×b), and no information related
to a, b is revealed to C1 or C2.

Secure Bit Decomposition (SBD). Assume a cloud server C1

with encrypted input Epk(a) and a cloud server C2 with the
private key sk, where a is a number not known to C1 and C2.
The Secure Bit Decomposition (SBD) protocol [36] securely
computes encrypted individual bits of the binary representation
of a, denoted as �a� = 〈Epk((a)

(1)
B ), ..., Epk((a)

(l)
B )〉, where l is

the number of bits, (a)
(1)
B and (a)

(l)
B denote the most and least

significant bits of a, respectively. At the end of the protocol,
the output �a� is known only to C1 and no information related
to a is revealed to C1 or C2.

A. Secure Boolean Operations
Secure OR (SOR). Assume a cloud sever C1 with encrypted
input Epk(â) and Epk(b̂), and a cloud server C2 with the private

key sk, where â and b̂ are two bits not known to C1 and C2. The
Secure OR (SOR) protocol [11] securely computes encrypted
result of the bit-wise OR of the two bits, Epk(â∨ b̂), such that

only C1 knows Epk(â∨ b̂) and no information related to â and

b̂ is revealed to C1 or C2.

Secure AND (SAND). Assume a cloud server C1 with en-
crypted input Epk(â) and Epk(b̂), and a cloud server C2 with

the private key sk, where â and b̂ are two bits not known to C1

and C2. The goal of the SAND protocol is to securely compute
encrypted result of the bit-wise AND of the two bits, Epk(â∧b̂),

such that only C1 knows Epk(â∧ b̂) and no information related

to â and b̂ is revealed to C1 or C2. We can simply use the
secure multiplication (SM) protocol on the two bits.

Secure NOT (SNOT). Assume a cloud server C1 with en-
crypted input Epk(â) and a cloud server C2 with the private
key sk, where â is a bit not known to C1,C2. The goal
of the SNOT protocol is to securely compute the encrypted
complement bit of â, Epk(¬â), such that only C1 knows
Epk(¬â) and no information related to â is revealed to C1

or C2. Secure NOT protocol can be easily implemented by
Epk(1 − â) = Epk(1)Epk(â)N−1.

B. Secure Minimum and Secure Comparison

Secure minimum protocol and secure comparison protocol
have been extensively studied in cryptography community
[1], [12], [38] and database community [11], [43]. Secure
comparison protocol can be easily adapted to secure minimum
protocol, and vice versa. For example, if we set Epk(out)
as the result of secure comparison Epk(Bool(a ≤ b)) known
by cloud server C1 (it will be Epk(1) when a ≤ b and
Epk(0) when a > b), C1 can get Epk(min(a, b)) by computing
Epk(a ∗ out + b ∗ ¬out).

We analyzed the existing protocols and observed that both
secure minimum (SMIN) algorithms [11], [43] from database
community for selecting a minimum have a security weakness,
i.e., C2 can determine whether the two numbers are equal to
each other. We point out the security weakness as follows.

Disclosure of Binary based SMIN. Given two numbers in
binary representations, the idea of the Binary representation
based SMIN protocol (BSMIN)1 [11] is for C1 to randomly
choose a boolean functionality F (by flipping a coin), where
F is either a > b or b > a, and then securely compute F

1The SMIN protocol for n values can be constructed by employing BSMIN
for two values at a time in a hierarchical fashion as suggested in [11] or simply
a linear fashion.
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with C2, such that the output of F is oblivious to both C1 and
C2. Based on the output and chosen F, C1 computes min(a, b)
locally using homomorphic properties. More specifically, given
the binary representation of the two numbers, for each bit,
C1 computes an encrypted boolean output Wi of the two bits
based on F (e.g., if F is a > b, Wi = Epk(1), if (a)

(i)
B > (b)

(i)
B

and Epk(0) otherwise) and an encrypted randomized difference

between (a)
(i)
B and (b)

(i)
B . This way, the order and difference of

the two numbers are not disclosed to C2. However, when a = b,
whatever F is, we have Wi = Epk(0) for all bits. We can show
that through the intermediate result (the encrypted randomized
difference between (a)

(i)
B and (b)

(i)
B , Γi = Epk(ri) for 1 ≤ i ≤ l,

the bit-wise XOR of (a)
(i)
B and (b)

(i)
B , Gi = Epk(0) for 1 ≤ i ≤ l),

C2 can determine a equals to b.

Disclosure of Perturbation based SMIN. The Perturbation
based SMIN protocol (PSMIN) [43] assumes C1 has Epk(a)
and Epk(b). C1 generates a set of v random values uniformly
from a certain range {r1, ..., rv|r1 < ri, i ≥ 2}. C1 then sends a
set of 2+v−1 encrypted values {Epk(a+r1), Epk(b+r1), Epk(x2+
r2), ..., Epk(xv + rv)} to C2, where xi, i ≥ 2 are randomly chosen
from a, b. The idea is that the smallest number, after being
perturbed by r1 (which is smaller than ri, i ≥ 2), will remain the
smallest. The perturbation hides the order of the numbers to C2.
Although not mentioned by the original paper, we point out C1

also needs to shuffle the encrypted values before sending them
to C2, otherwise the differences between the values will be
disclosed to C2 after decryption. After decrypting those 2+v−1
values, C2 takes the minimal min and sends Epk(min) to C1.
C1 computes Epk(min − r1) as result. The security weakness
of PSMIN is due to the fact that if two numbers are equal,
their perturbed values remain equal. Since C1 sends {Epk(a +
r1), Epk(b+r1), Epk(x2+r2), ..., Epk(xv+rv)} to C2, C2 can learn
two numbers are equal based on a + r1 and b + r1.

Therefore, we adapted the secure minimum/comparison
protocols [38] from cryptography community in this paper.
The basic idea of those protocols is that for any two l bit
numbers a and b, the most significant bit (zl) of z = 2l + a− b
indicates the relationship between a and b, i.e., zl = 0 ⇔ a < b.
We list the secure minimum/comparison protocols we used in
this paper below.

Secure Less Than or Equal (SLEQ). Assume a cloud server
C1 with encrypted input Epk(a) and Epk(b), and a cloud
server C2 with the private key sk, where a and b are two
numbers not known to C1 and C2. The goal of the SLEQ
protocol is to securely compute the encrypted boolean output
Epk(Bool(a ≤ b)), such that only C1 knows Epk(Bool(a ≤ b))
and no information related to a and b is revealed to C1 or C2.

Secure Equal (SEQ). Assume a cloud server C1 with en-
crypted input Epk(a) and Epk(b), and a cloud server C2 with the
private key sk, where a and b are two numbers not known to C1

and C2. The goal of the SEQ protocol is to securely compute
the encrypted boolean output Epk(Bool(a == b)), such that
only C1 knows Epk(Bool(a == b)) and no information related
to Bool(a == b) is revealed to C1 or C2.

Secure Less (SLESS). Assume a cloud server C1 with en-
crypted input Epk(a) and Epk(b), and a cloud server C2 with
the private key sk, where a and b are two numbers not known
to C1 and C2. The goal of the SLESS protocol is to securely
compute the encrypted boolean output Epk(Bool(a < b)), such
that only C1 knows Epk(Bool(a < b)) and no information

related to Bool(a < b) is revealed to C1 or C2. This can be
simply implemented by conjunction from the output of SEQ
and SLEQ.

Secure Minimum (SMIN). Assume a cloud server C1 with
encrypted input Epk(a) and Epk(b), and a cloud server C2 with
the private key sk, where a and b are two numbers not known
to both parties. The goal of the SMIN protocol is to securely
compute encrypted minimum value of a and b, Epk(min(a, b)),
such that only C1 knows Epk(min(a, b)) and no information
related to a and b is revealed to C1 or C2. Benefiting from the
probabilistic property of Paillier, the ciphertext of min(a, b),
i.e., Epk(min(a, b)) is different from the ciphertext of a, b, i.e.,
Epk(a), Epk(b). Therefore, C1 does not know which of a or
b is min(a, b). In general, assume C1 has n encrypted values,
the goal of SMIN protocol is to securely compute encrypted
minimum of the n values.

V. Secure Dominance Protocol

The key to compute skyline is to compute dominance
relationship between two tuples. Assume a cloud server C1

with encrypted tuples a = (a[1], ..., a[m]), b = (b[1], ...,b[m])
and a cloud server C2 with the private key sk, where a and b are
not known to both parties. The goal of the secure dominance
(SDOM) protocol is to securely compute Epk(Bool(a ≺ b))
such that only C1 knows Epk(1) if a ≺ b, otherwise, Epk(0).

Algorithm 2: Secure Dominance Protocol.

input : C1 has Epk(a), Epk(b) and C2 has sk.
output: C1 gets Epk(1) if a ≺ b, otherwise, C1 gets Epk(0).

1 C1 and C2:
2 for j = 1 to m do
3 C1 gets δ j = Epk(Bool(a[ j] ≤ b[ j])) by SLEQ;

4 use SAND to compute Φ = δ1 ∧ ...,∧δm;
5 C1:
6 compute α = Epk(a[1])×, ...,×Epk(a[m]);
7 compute β = Epk(b[1])×, ...,×Epk(b[m]);
8 C1 and C2:
9 C1 gets σ = Epk(Bool(α < β)) by employing SLESS;

10 C1 gets Ψ = σ ∧ Φ as the final dominance relationship using
SAND;

Protocol Design. Given any two tuples a = (a[1], ..., a[m])
and b = (b[1], ...,b[m]), recall the definition of skyline, we
say a ≺ b if for all j, a[ j] ≤ b[ j] and for at least one j,
a[ j] < b[ j] (1 ≤ j ≤ m). If for all j, a[ j] ≤ b[ j], we have
either a = b or a ≺ b. We refer to this case as a � b. The
basic idea of secure dominance protocol is to first determine
whether a � b, and then determine whether a = b.

The detailed protocol is shown in Algorithm 2. For each
attribute, C1 and C2 cooperatively use the secure less than
or equal (SLEQ) protocol to compute Epk(Bool(a[ j] ≤ b[ j])).
And then C1 and C2 cooperatively use SAND to compute Φ =
δ1∧, ...,∧δm. If Φ = Epk(1), it means a � b, otherwise, a �
b. We note that, the dominance relationship information Φ is
known only to C1 in ciphertext. Therefore, both C1 and C2 do
not know any information about whether a � b.

Next, we need to determine if a � b. Only if a � b,
then a ≺ b. One naive way is to employ SEQ protocol for
each pair of attribute and then take the conjunction of the
output. We propose a more efficient way which is to check
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whether S (a) < S (b), where S (a) is the attribute sum of tuple
a. If S (a) < S (b), then it is impossible that a = b. As the
algorithm shows, C1 computes the sum of all attributes α =
Epk(a[1]+ ...+a[m]) and β = Epk(b[1]+ ...+b[m]) based on the
additive homomorphic property. Then C1 and C2 cooperatively
use SLESS protocol to compute σ = Epk(Bool(α < β)). Finally,
C1 and C2 cooperatively use SAND protocol to compute the
final dominance relationship Ψ = σ ∧Φ which is only known
to C1 in ciphertext. Ψ = Epk(1) means a ≺ b, otherwise, a ⊀ b.

Security Analysis. Based on the composition theorem (The-
orem 1), the security of secure dominance protocol relies on
the security of SLEQ, SLESS, and SAND, which have been
shown in existing works.

Complexity Analysis. To determine a � b, Algorithm 2
requires O(m) encryptions and decryptions. Then to determine
if a = b, Algorithm 2 requires O(1) encryptions and decryp-
tions. Therefore, our secure dominance protocol requires O(m)
encryptions and decryptions in total.

VI. Secure Skyline Protocol

In this section, we first propose a basic secure skyline pro-
tocol and show why such a simple solution is not secure. Then
we propose a fully secure skyline protocol. Both protocols
are constructed by using the security primitives discussed in
Section IV and the secure dominance protocol in Section V.

As mentioned in Algorithm 1, given a skyline query q, it is
equivalent to compute the skyline in a transformed space with
the query point q as the origin and the absolute distances to
q as mapping functions. Hence we first show a preprocessing
step in Algorithm 3 which maps the dataset to the new space.
Since the skyline only depends on the order of the attribute
values, we use (pi[ j] − q[ j])2 which is easier to compute than
|pi[ j] − q[ j]| as the mapping function2. After Algorithm 3, C1

has the encrypted dataset Epk(P) and Epk(T ), C2 has the private
key sk. The goal is to securely compute the skyline by C1 and
C2 without participation of data owner and the client.

Algorithm 3: Preprocessing.

input : C1 has Epk(P), C2 has sk, and the client has q.
output: C1 obtains the new encrypted dataset Epk(T ).

1 Client:
2 send (Epk(−q[1]), ..., Epk(−q[m])) to C1;
3 C1:
4 for i = 1 to n do
5 for j = 1 to m do
6 Epk(tempi[ j]) = Epk(pi[ j] − q[ j]) =

Epk(pi[ j]) × Epk(−q[ j]) mod N2;

7 C1 and C2:
8 use SM protocol to compute Epk(T ) = (Epk(t1), ..., Epk(tn))

only known by C1, where Epk(ti) = (Epk(ti[1]), ..., Epk(ti[m]))
and Epk(ti[ j]) = Epk(tempi[ j]) × Epk(tempi[ j]);

A. Basic Protocol

We first illustrate a straw-man protocol which is straight-
forward but not fully secure (as shown in Algorithm 4). The
idea is to implement each of the steps in Algorithm 1 using
the primitive secure protocols. C1 first determines the terminal

2We use |pi[ j] − q[ j]| in our running example for simplicity.

condition, if there is no tuple exists in dataset Epk(T ), the
protocol ends, otherwise, the protocol proceeds as follows.

Compute minimum attribute sum. C1 first computes the sum
of Epk(ti[ j]) for 1 ≤ j ≤ m, denoted as Epk(S (ti)), for each
tuple ti. Then C1 and C2 uses SMIN protocol such that C1

obtains Epk(S (tmin)).

Select the skyline with minimum attribute sum. The chal-
lenge now is we need to select the tuple Epk(tmin) with the
smallest Epk(S (ti)) as a skyline tuple. In order to do this, a
naive way is for C1 to compute Epk(S (ti) − S (tmin)) for all
tuples and then send them to C2. C2 can decrypt them and
determine which one is equal to 0 and return the index to C1.
C1 then adds the tuple Epk(pmin) to skyline pool.

Eliminate dominated tuples. Once the skyline tuple is
selected, C1 and C2 cooperatively use SDOM protocol to
determine the dominance relationship between Epk(tmin) and
other tuples. In order to delete those tuples that are dominated
by Epk(tmin), a naive way is for C1 to send the encrypted
dominance output to C2, who can decrypt it and send back the
indexes of the tuples who are dominated to C2. C1 can delete
those tuples dominated by Epk(tmin) and the tuple Epk(tmin)
from Epk(T ). The algorithm continues until there is no tuples
left.

Return skyline results to client. Once C1 has the encrypted
skyline result, it can directly send them to the client if the
client has the private key. However, in our setting, the client
does not have the private key for better security. Lines 25 to
39 in Algorithm 4 illustrate how the client obliviously obtains
the final skyline query result with the help of C1 and C2, at
the same time, C1 and C2 know nothing about the final result.
Given the skyline tuples Epk(p1), ..., Epk(pk) in skyline pool,
where k is the number of skyline. The idea is for C1 to add a
random noise ri[ j] to each pi[ j] in ciphertext and then sends
the encrypted randomized values αi[ j] to C2. C1 also sends
the noise ri[ j] to client. At the same time, C2 decrypts the
randomized values αi[ j] and sends the result r′i [ j] to client.
Client receives the random noise ri[ j] from C1 and randomized
values of the skyline points αi[ j] from C2, and removes the
noise by computing pi[ j] = r′i [ j] − ri[ j] for i = 1, ..., k and
j = 1, ...,m as the final result.

B. Fully Secure Skyline Protocol

The basic protocol clearly reveals several information to
C1 and C2 as follows,

• When selecting the skyline tuple with minimum at-
tribute sum, C1 and C2 know which tuples are skyline
points, which violates result privacy requirement.

• When eliminating dominated tuples, C1 and C2 know
the dominance relationship among tuples with respect
to the query tuple q, which violates our data pattern
privacy requirement.

To address these leakage, we propose a fully secure pro-
tocol in Algorithm 5. The step to compute minimum attribute
sum and return the results to the client are the same as the basic
protocol. We focus on the following steps that are designed to
address the disclosure risks of the basic protocol.

Select skyline with minimum attribute sum. Once C1

obtains the encrypted minimum attribute sum Epk(S (tmin)), the
challenge is how to select the tuple Epk(tmin) with the minimum
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Algorithm 4: Basic Secure Skyline Protocol.

input : C1 has Epk(P), Epk(T ) and C2 has sk.
output: client knows the skyline query result.

1 Compute minimum attribute sum;
2 C1:
3 if there is no tuple in Epk(T ) then
4 break;

5 for i = 1 to n do
6 Epk(S (ti)) = Epk(ti[1]) × ... × Epk(ti[m]) mod N2;

7 C1 and C2:
8 Epk(S (tmin)) = S MIN(Epk(S (t1)), ..., Epk(S (tn)));
9 Select the skyline with minimum attribute sum;

10 C1:
11 for i = 1 to n do
12 αi = Epk(S (tmin))N−1 × Epk(S (ti)) mod N2;
13 α′i = α

ri
i mod N2, where ri ∈ Z+N ;

14 send α′ to C2;
15 C2:
16 decrypt α′ and tell C1 which one equals to 0;
17 C1:
18 add the corresponding Epk(pmin) to the skyline pool;
19 Eliminate dominated tuples;
20 C1 and C2:
21 use SDOM protocol to determine the dominance relationship

between Epk(tmin) and other tuples;
22 delete those tuples dominated by Epk(tmin) and Epk(tmin);
23 GOTO Line 1;
24 Return skyline results to client;
25 C1:
26 for i = 1 to k do
27 for j = 1 to m do
28 αi[ j] = Epk(pi[ j]) × Epk(ri[ j]) mod N2, where

ri[ j] ∈ Z+N ;

29 send αi[ j] to C2 and ri[ j] to client for all
i = 1, ..., k; j = 1, ...,m;

30 C2:
31 for i = 1 to k do
32 for j = 1 to m do
33 ri[ j]′ = Dsk(αi[ j]);

34 send ri[ j]′ to client;
35 Client:
36 receive ri[ j] from C1 and ri[ j]′ from C2;
37 for i = 1 to k do
38 for j = 1 to m do
39 pi[ j] = ri[ j]′ − ri[ j];

sum Epk(S (tmin)) as a skyline tuple such that C1 and C2 know
nothing about which tuple is selected. We present a protocol
as shown in Algorithm 6.

We first need to determine which S (ti) is equal to S (tmin).
Note that this can not be achieved by the SMIN protocol which
only selects the minimum value. Here we propose an efficient
way, exploiting the fact that it is okay for C2 to know there
is one equal case (since we are selecting one skyline tuple) as
long as it does not know which one. C1 first computes α′i =
Epk((S (ti) − S (tmin)) × ri), and then sends a permuted list β =
π(α′) to C2 based on a random permutation sequence π. The
permutation hides which sum is equal to the minimum from
C2 while the uniformly random noise ri masks the difference
between each sum and the minimum sum. Note that α′i is

Algorithm 5: Fully Secure Skyline Protocol.

input : C1 has Epk(P), Epk(T ) and C2 has sk.
output: C1 knows the encrypted skyline Epk(psky).

1 Order preserving perturbation;
2 C1:
3 for i = 1 to n do
4 Epk(S (ti)) = Epk(ti[1]) × ... × Epk(ti[m]) mod N2;

5 C1 and C2:
6 for i = 1 to n do
7 �Epk(S (ti))� = S BD(Epk(S (ti)));

8 C1:
9 for i = 1 to n do

10 �Epk(S (ti))� = 〈Epk((S (ti))
(1)
B ), ..., Epk((S (ti))

(l)
B ),

Epk((S (ti))
(l+1)
B ), ..., Epk((S (ti))

(l+�log n�)
B )〉, where

(S (ti))
(l+1)
B , ..., (S (ti))

(l+�log n�)
B is the binary representation

of an exclusive vale of [0, n − 1];

11 Epk(S (ti)) =
∏l
γ=1 Epk((S (ti))

(γ)
B )2l−γ

mod N2;

12 C1 and C2:
13 Epk(S (tmin)) = S MIN(Epk(S (t1)), ..., Epk(S (tn));
14 C1:
15 λ = (Epk(S (tmin)) × Epk(MAX)−1)r mod N2, where ri ∈ Z+N ;
16 send λ to C2;
17 C2:
18 if Dsk(λ) = 0 then
19 break;

20 Select skyline with minimum attribute sum;
21 (Epk(psky), Epk(tsky)) =FindOneSkyline

(Epk(P), Epk(T ), Epk(S (ti)), Epk(S (tmin))) (Algorithm 6);
22 Eliminate dominated tuples;
23 C1 and C2:
24 for i = 1 to n do
25 for γ = 1 to l do
26 Epk((S (ti))

(γ)
B ) = S OR(Vi, Epk((S (ti))

(γ)
B ));

27 C1:
28 for i = 1 to n do
29 Epk(S (ti)) =

∏l
γ=1 Epk((S (ti))

(γ)
B )2l−γ

mod N2;

30 C1 and C2:
31 for i = 1 to n do
32 Vi = S DOM(Epk(tsky), Epk(ti));

33 Lines 23-32;
34 GOTO Line 1;

uniformly random in Z+N except when S (ti) − S (tmin) = 0, in
which case α′i = 0. C1 decrypts βi, if it is 0, it means tuple
i has smallest Epk(S (ti)). Therefore, C2 sends Epk(1) to C1,
otherwise, sends Epk(0).

After receiving the encrypted permuted bit vector U as the
equality result, C1 applies a reverse permutation, and obtains
an encrypted bit vector V , where one tuple has bit 1 suggesting
it has the minimum sum. In order to obtain the attribute values
of this tuple, C1 and C2 employ SM protocol to compute
encrypted product of the bit vector and the attribute values,
Epk(ti[ j]′) and Epk(pi[ j]′). Since all other tuples except the one
with the minimum sum will be 0, we can sum all Epk(ti[ j]′)
and Epk(pi[ j]′) on each attribute and C1 can obtain the attribute
values corresponding to the skyline tuple.

Order preserving perturbation. We can show that Algorithm
6 is secure and correctly selects the skyline tuple if there is
only one minimum. A potential issue is that multiple tuples
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Algorithm 6: Find One Skyline.

input : C1 has encrypted dataset Epk(P), Epk(T ), Epk(S (ti)),
and Epk(S (tmin)), C2 has private key sk.

output: C1 knows one encrypted skyline Epk(psky) and
Epk(tsky).

1 C1:
2 for i = 1 to n do
3 αi = Epk(S (tmin))N−1 × Epk(S (ti)) mod N2;
4 α′i = α

ri
i mod N2, where ri ∈ Z+N ;

5 send β = π(α′) to C2;
6 C2:
7 receive β from C1;
8 for i = 1 to n do
9 β′i = Dsk(βi);

10 if β′i = 0 then
11 Ui = Epk(1);

12 else
13 Ui = Epk(0);

14 send U to C1;
15 C1:
16 receive U from C2;
17 V = π−1(U);
18 for i = 1 to n do
19 for j = 1 to m do
20 Epk(ti[ j]′) = S M(Vi, Epk(ti[ j]));
21 Epk(pi[ j]′) = S M(Vi, Epk(pi[ j]));

22 for j = 1 to m do
23 Epk(t[ j]′) =

∏n
i=1 Epk(ti[ j]′) mod N2;

24 Epk(p[ j]′) =
∏n

i=1 Epk(pi[ j]′) mod N2;

25 add Epk(psky) = 〈Epk(p[1]′), ..., Epk(p[m]′)〉 to skyline pool;
26 use Epk(tsky) = 〈Epk(t[1]′), ..., Epk(t[m]′)〉 to compare with

other Epk(ti);

may have the same minimum sum. If this happens, not only
is this information revealed to C2, but also the skyline tuple
cannot be selected (computed) correctly, since the bit vector
contains more than one 1 bit. To address this, we employ order-
preserving perturbation which adds a set of mutually different
bit sequence to a set of values such that: 1) if the original
values have equal cases, the perturbed values are guaranteed
not equal to each other, and 2) if the original values are not
equal to each other, their order is preserved. The perturbed
values are then used as the input for Algorithm 6.

Concretely, given n numbers in their binary representations,
we add a �logn�-bit sequence to the end of each Epk(S (ti)),
each represents a unique bit sequence in the range of [0, n−1].
This way, the perturbed values are guaranteed to be different
from each other while their order is preserved since the added
bits are the least significant bits. Line 10 of Algorithm 5 shows
this step. We note that we can multiply each sum Epk(S (ti)) by
n and uniquely add a value from [0, n − 1] to each Epk(S (ti)),
hence guarantee they are not equal to each other. This will
be more efficient than adding a bit sequence, however, since
we will need to perform the bit decomposition later in the
protocol to allow bit operators, we run decomposition by the
SBD protocol for l bits in the beginning of the protocol rather
than l + �log n� bits later.

Eliminate dominated tuples. Once the skyline tuple is se-
lected, it can be added to the skyline pool and then used to

eliminate dominated tuples. In order to do this, C1 and C2

cooperatively use SDOM protocol to determine the dominance
relationship between Epk(tmin) and other tuples. The challenge
is then how to eliminate the dominated tuples without C1 and
C2 knowing which tuples are being dominated and eliminated.
Our idea is that instead of eliminating the dominated tuples,
we “flag” them by securely setting their attribute values to the
maximum domain value. This way, they will not be selected
as skyline tuples in the remaining iterations. Concretely, we
can set the binary representation of their attribute sum to all
1s so that it represents the domain maximum. Since we added
�log n� bits to �Epk(S (ti))�, the new �Epk(S (ti))� has l+ �log n�
bits. Therefore, the maximum value MAX = 2l+�log n� − 1. To
obliviously set the attributes of only dominated tuples to MAX,
based on the encrypted dominance output Vi of the dominance
protocol, C1 and C2 cooperatively employ SOR of the dom-
inance boolean output and the bits of the S (ti). This way, if
the tuple is dominated, it will be set to MAX. Otherwise, it
will remain the same. If Epk(S (tmin)) = Epk(MAX), it means
all the tuples are processed, i.e., flagged either as a skyline or
a dominated tuple, the protocol ends.

Example 3: We illustrate the entire protocol through the
running example shown in Table III. Please note that all
column values are in encrypted form except columns π and
β′. Given the mapped data points ti, C1 first computes the
attribute sum Epk(S (ti)) shown in the third column. We set
l = 5, C1 gets the binary representation of the attribute
sum �Epk(S (ti))�. Because n = 4, C1 obliviously adds the
order-preserving perturbation �log 4� = 2 bits to the end of
�Epk(S (ti))� respectively to get the new Epk(S (ti)) (shown in
the sixth column). Then C1 gets Epk(S (tmin)) = Epk(30) by
employing SMIN.

The protocol then turns to the subroutine Algorithm 6
to select the first skyline based on the minimum attribute
sum. C1 computes αi = Epk(S (ti) − S (tmin)). Assume the
random noise vector r = 〈3, 9, 31, 2〉 and the permutation
sequence π = 〈2, 1, 4, 3〉, C1 sends the encrypted permuted and
randomized difference vector β to C2. After decrypting β, C2

gets β′ and then sends U to C1. C1 computes V by applying
a reverse permutation. By employing SM with V , C1 com-
putes (Epk(ti[1]′), Epk(ti[2]′)) and (Epk(pi[1]′), Epk(pi[2]′)). Af-
ter summing all column values, C1 adds Epk(psky) = (Epk(39),
Epk(120)) to skyline pool and uses Epk(tsky) = (Epk(2), Epk(5))
to eliminate dominated tuples.

The protocol now turns back to the main routine in Algo-
rithm 5 to eliminate dominated tuples. C1 and C2 use SOR with
V to make Epk(S (tmin)) = Epk(127) and Epk(S (ti)) = Epk(S (ti))
for i � min. Now, only Epk(S (tmin)) = Epk(S (t2)) has changed
to Epk(127) which is “flagged” as MAX. We emphasize that C1

does not know this value has changed because the ciphertext
of all tuples has changed. Next, C1 and C2 find the dominance
relationship between Epk(tsky) and Epk(ti) by SDOM protocol.
C1 obtains the dominance vector V . Using same method,
C1 flags Epk(S (t3)) and Epk(S (t4)) to Epk(127). The protocol
continues until all are set to MAX.

Security Analysis. Based on Theorem 1, the protocol is secure
if the subprotocols are secure and the intermediate results
are random or pseudo-random. We focus on the intermediate
result here. From C1’s view, the intermediate result includes
U. Because U is ciphertext and C1 does not have the secret
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TABLE III: Example of Algorithm 8.

C1: C2: C1:

ti (ti[1], ti[2]) S (ti) �S (ti)� pert. S (ti) S (ti) − S (tmin) r π β′ U V (ti[1]′, ti[2]′) (pi[1]′, pi[2]′) S (ti) V S (ti)

t1 (1, 15) 16 1, 0, 0, 0, 0 1, 1 67 67 − 30 3 2 0 1 0 (0, 0) (0, 0) 67 0 67
t2 (2, 5) 7 0, 0, 1, 1, 1 1, 0 30 30 − 30 9 1 111 0 1 (2, 5) (39, 120) 127 0 127
t3 (4, 5) 9 0, 1, 0, 0, 1 0, 1 37 37 − 30 31 4 92 0 0 (0, 0) (0, 0) 37 1 127
t4 (4, 15) 19 1, 0, 0, 1, 1 0, 0 76 76 − 30 2 3 217 0 0 (0, 0) (0, 0) 76 1 127

key, C1 can simulate U based on its input and output. From
C2’s view, the intermediate result includes β. β contains one
Epk(0) and m − 1 ciphertext of any positive value. After the
permutation π of C1, C2 cannot determine where is the Epk(0).
Therefore, C2 can simulate β based on its input and output.
Hence the protocol is secure.
Computational Complexity Analysis. The subroutine Algo-
rithm 6 requires O(n) decryptions in Line 9, O(nm) encryptions
and decryptions in Lines 20 and 21. Thus, Algorithm 6 requires
O(nm) encryptions and decryptions. In Algorithm 5, Line 7
requires O(nl) encryptions and decryptions. Line 10 requires
O(n�log n�) encryptions. Line 12 requires O((l + �log n�)n)
encryptions and decryptions. Line 26 requires O(l+�log n�) en-
cryptions and decryptions. Line 32 requires O(nm) encryptions
and decryptions. Thus, this part requires O((l+ �log n�)n+nm)
encryptions and decryptions. Because this part runs k times, the
fully secure skyline protocol requires O(k(l + �log n�)n + knm)
encryptions and decryptions in total.

VII. Experiments

In this section, we evaluate the performance and scala-
bility of our protocols under different parameter settings. For
comparison purposes, we implemented and evaluated both
protocols: the Basic Secure Skyline Protocol (BSSP) in Section
VI-A, and the Fully Secure Skyline Protocol (FSSP) in Section
VI-B.

A. Experiment Setup

We implemented all algorithms in C and ran experiments
on a machine with Intel Core i7-6700K 4.0GHz running
Ubuntu 16.01. We also implemented a parallel version of the
protocols and tested on a cluster of machines with Intel Core
i7-2600 3.40GHz running CentOS 6, which we will describe
in Section VII-C.

In our experiment setup, both C1 and C2 are running on
the same workstation, but since we implemented the commu-
nication using sockets, it can be easily run on two machines
without modification which we have tested. Moreover, the
query points used in our setup are randomly chosen. The
reported computation time unless otherwise noted is the total
computation time of the C1 and C2.
Datasets. We used both synthetic datasets and a real NBA
dataset in our experiments. To study the scalability of
our methods, we generated independent (INDE), correlated
(CORR), and anti-correlated (ANTI) datasets following the
seminal work [4]. We also built a dataset that contains 2384
NBA players who are league leaders of playoffs3. Each player
has five attributes that measure the player’s performance:
Points (PTS), Rebounds (REB), Assists (AST), Steals (STL),
and Blocks (BLK).

3The data was extracted from http://stats.nba.com/leaders
/alltime/?ls=iref:nba:gnav on 04/15/2015

B. Performance Results

In this subsection, we evaluate our protocols by varying
the number of tuples (n), the number of dimensions (m), and
the key size (K) on datasets of various distributions.

Impact of number of tuples n. Figures 4(a)(b)(c)(d) show
the time cost of different n on CORR, INDE, ANTI, and NBA
datasets, respectively. We observe that for all datasets, the time
cost increases approximately linearly with the number of tuples
n, which is consistent with our complexity analysis. While
BSSP is very efficient, FSSP does incur more computational
overhead for full security. Comparing different datasets, the
time cost is in slightly increasing order for CORR, INDE, and
ANTI, due to the increasing number of skyline points of the
datasets. The time for NBA dataset is low due to its small
number of tuples.

Impact of number of dimensions m. Figures 5(a)(b)(c)(d)
show the time cost of different m on CORR, INDE, ANTI,
and NBA datasets, respectively. For all datasets, the time
cost increases approximately linearly with the number of
dimensions m. FSSP also shows more computational overhead
than BSSP. The different datasets show a similar comparison
as in Figure 4. The time for NBA dataset is lower than the
CORR dataset which suggests that the NBA data is strongly
correlated.

Impact of encryption key size K. Figures 6(a)(b)(c)(d) show
the time cost with different key size used in the Paillier
cryptosystem on CORR, INDE, ANTI, and NBA datasets,
respectively. A stronger security indeed comes at the price
of computation overhead, i.e., the time cost increases signifi-
cantly, almost exponential, when K grows.

Communication overhead. We also measured the overall
time which includes computation time reported earlier and the
communication time between the two server processes. Figure
7 shows the computation and communication time of different
n on INDE dataset of FSSP. We observe that computation time
only takes about one third of the total time in this setting.

C. Performance Improvements through Parallel Implementa-
tion

In order to reduce the skyline query processing time, we
demonstrate that our algorithm can be parallelized, using a
hierarchical divide-and-conquer paradigm with POSIX threads.
First we divide our dataset into v subdatasets (v refers to the
number of threads) and assign one to each thread. Each thread
computes and returns the skyline in the subdataset when it
finishes. When the main thread receives skyline result from two
or more threads, it merges them into one new subdataset and
sends it to an idle thread, this process iterates until finally there
is only one set of skyline, which is the final result. We refer
to this implementation local parallelism using multi-threading.
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Fig. 7: Computation and communication time cost of different
n (m=2, K=512).

To further demonstrate the scalability of our algorithm,
we also implemented a distributed version, which employs
manager-worker model. The manager plays the role of dis-
tributing data to workers, while workers (multi-threading)
compute skylines in any given working set and return them
to the manager, which works similarly as the multi-threading
parallelism. The only difference here is that the manager
could implement sophisticated load balancing algorithm to

fully utilize computation resources (not implemented in our
current prototype).

number of tuples n
1000 3000 5000 7000 9000

tim
e(

se
co

nd
s)

×104

0

0.5

1

1.5

2
serial
parallel

(a) serial vs. multi-threading.

number of PCs
2 4 8 16 32 64

tim
e(

se
co

nd
s)

×104

0

1

2

3

4 n=40000
n=80000
n=120000
n=160000

(b) distributed parallel implemen-
tation.

Fig. 8: Parallel implementations (m=2, K=512).

In the experiment setup, we used workstations of the
same configurations as described earlier. In multi-threading
parallelism, we run C1 and C2 on the same machine with C1

running 8 threads. As for distributed version, we tested it with
2, 4, 8, 16, 32, 64 worker machines.

Figures 8 (a)(b) show the time cost of parallelized FSSP of
the multi-threading and distributed version, respectively. Figure
8(a) indicates that multi-threading version (with 8 threads) is
about 6 times faster than the serial version. Figure 8(b) shows
the time cost with varying number of worker machines and
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varying number of tuples. We observe that our distributed
version is very effective in reducing computation time when
scaling to large datasets. And it shows a sub-linear time
increase with respect to the number of worker machines.

VIII. Conclusions

In this paper, we presented a fully secure skyline protocol
on encrypted data using two non-colluding cloud servers under
the semi-honest model. It ensures semantic security in that the
cloud servers knows nothing about the data including indirect
data patterns, query, as well as the query result. In addition,
the client and data owner do not need to participate in the
computation. We also presented a secure dominance protocol
which can be used by skyline queries as well as other queries.
Finally, we presented our implementation of the protocol and
demonstrated the feasibility and efficiency of the solution. As
for future work, we plan to optimize the communication time
complexity to further improve the performance of the protocol.
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