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Abstract—Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and

query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the

cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server

perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a

secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper,

we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria

decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query

protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol,

which can be also used as a building block for other queries. Furthermore, we demonstrate two optimizations, data partitioning and lazy

merging, to further reduce the computation load. Finally, we provide both serial and parallelized implementations and empirically study

the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

Index Terms—Skyline, secure, efficient, parallel, semi-honest
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1 INTRODUCTION

AS an emerging computing paradigm, cloud computing
attracts increasing attention from both research and

industry communities. Outsourcing data and computation to
cloud server provides a cost-effective way to support large
scale data storage andquery processing.However, due to secu-
rity and privacy concerns, sensitive data need to be protected
from the cloud server aswell as other unauthorized users.

A common approach to protect the confidentiality of out-
sourced data is to encrypt the data (e.g., [15], [33]). To protect
the confidentiality of the query from cloud server, authorized
clients also send encrypted queries to the cloud server. Fig. 1
illustrates our problem scenario of secure query processing
over encrypted data in the cloud. The data owner outsources
encrypted data to the cloud server. The cloud server processes
encrypted queries from the client on the encrypted data and
returns the query result to the client. During the query proc-
essing, the cloud server should not gain any knowledge about
the data, data patterns, query, and query result.

Fully homomorphic encryption schemes [15] ensure strong
security while enabling arbitrary computations on the
encrypted data. However, the computation cost is prohibitive
in practice. Trusted hardware such as Intel’s Software Guard
Extensions (SGX) brings a promising alternative, but still has

limitations in its security guarantees [10]. Many techniques
(e.g., [17], [38]) have beenproposed to support specific queries
or computations on encrypted data with varying degrees of
security guarantee and efficiency (e.g., by weaker encryp-
tions). Focusing on similarity search, secure k-nearest neigh-
bor (kNN) queries, which return k most similar (closest)
records given a query record, have been extensively studied
[12], [20], [40], [42].

In this paper, we focus on the problem of secure skyline
queries on encrypted data, another type of similarity search
important for multi-criteria decision making. The skyline or
Pareto of amulti-dimensional dataset given a query point con-
sists of the data points that are not dominated by other points.
A data point dominates another if it is closer to the query
point in at least one dimension and at least as close to the
query point in every other dimension. The skyline query is
particularly useful for selecting similar (or best) records when
a single aggregated distance metric with all dimensions is
hard to define. The assumption of kNNqueries is that the rela-
tive weights of the attributes are known in advance, so that a
single similarity metric can be computed between a pair of
records aggregating the similarity between all attribute pairs.
However, this assumption does not always hold in practical
applications. Inmany scenarios, it is desirable to retrieve simi-
lar records considering all possible relative weights of the
attributes (e.g., considering only one attribute, or an arbitrary
combination of attributes), which is essentially the skyline or
the “pareto-similar” records.

Motivating Example.Consider a hospital whowishes to out-
source its electronic health records to the cloud and the data is
encrypted to ensure data confidentiality. Let P denote a sam-
ple heart disease dataset with attributes ID, age, trestbps (rest-
ing blood pressure). We sampled four patient records
p1; :::;p4 from the heart disease dataset of UCI machine
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learning repository [22] as shown in Table 1 a and Fig. 2. Con-
sider a physician who is treating a heart disease patient
q ¼ ð41; 125Þ and wishes to retrieve similar patients in order
to enhance and personalize the treatment for patient q. While
it is unclear how to define the attribute weights for kNN
queries (p1 is the nearest if only age is consideredwhile p2;p3
are the nearest if only trestbps is considered), skyline provides
all pareto-similar records that are not dominated by any other
records. Skyline includes all possible 1NN results by consid-
ering all possible relative attribute weights, and hence can
serve as a filter for users. Given the query q, we can map the
data points to a new space with q as the origin and the dis-
tance to q as the mapping function. The mapped records
ti½j� ¼ jpi½j� � q½j�j þ q½j� on each dimension j are shown in
Table 1 b and also in Fig. 2. It is easy to see that t1 and t2 are
skyline in the mapped space, which means p1 and p2 are sky-
linewith respect to query q.

Our goal is for the cloud server to compute the skyline
query given q on the encrypted data without revealing the
data, the query q, the final result set fp1;p2g, as well as any
intermediate result (e.g., t2 dominates t4) to the cloud. We
note that skyline computation (with query point at the ori-
gin) is a special case of skyline queries.

Challenges. Designing a fully secure protocol for skyline
queries over encrypted data presents significant challenges
due to the complex comparisons and computations. Let P
denotes a set of n tuples p1; :::;pn with m attributes and q
denotes input query tuple. In kNN queries, we only need to
compute the distances between each tuple pi and the query
tuple q and then choose the k tuples corresponding to the k
smallest distances. In skyline queries, for each tuple pi, we
need to compare it with all other tuples to check dominance.
For each comparison between two tuples pa and pb, we need
to compare all their m attributes and for comparison of each
attribute p½j�, there are three different outputs, i.e., pa½j� < ð¼;
> Þ pb½j�. Therefore, there are 3m different outputs for each
comparison between two tuples, based on which we need to
determine if one tuple dominates the other. How to determine
the 2m � 1 cases that satisfy pa dominates pb efficiently while
protecting intermediate results (e.g., whether two attribute
values are the same) is particularly challenging.

Such complex comparisons and computations require
more complex protocol design in order to carry out the
computations on the encrypted data given an encryption
scheme with semantic security (instead of weaker order-
preserving or other property-preserving encryptions). In
addition, the extensive intermediate result means more
indirect information about the data can be potentially
revealed (e.g., which tuple dominates which other, whether
there are duplicate tuples or equivalent attribute values)
even if the exact data is protected. This makes it challenging
to design a fully secure and efficient skyline query protocol
in which the cloud should not gain any knowledge about
the data including indirect data patterns.

Contributions.We summarize our contributions as follows.

� We study the secure skyline problem on encrypted
data with semantic security for the first time. We
assume the data is encrypted using the Paillier crypto-
system which provides semantic security and is par-
tially homomorphic.

� We propose a fully secure dominance protocol, which
can be used as a building block for skyline queries as
well as other queries, e.g., reverse skyline queries [11]
and k-skyband queries [34].

� We present two secure skyline query protocols. The
first one, served as a basic and efficient solution,
leaks some indirect data patterns to the cloud server.
The second one is fully secure and ensures that the
cloud gains no knowledge about the data including
indirect patterns. The proposed protocols exploit the
partial (additive) homomorphism as well as novel
permutation and perturbation techniques to ensure
the correct result is computed while guaranteeing
privacy. We provide security and complexity analy-
sis of the proposed protocols.

� Compared with our conference version [30], we pres-
ent two new optimizations, data partitioning and lazy
merging, to further reduce the computation load. For
the data partitioning,we theoretically analyze the opti-
mal number of partitions given the number of points,
the expected number of output skyline points, the
number of decomposed bits, and the number of
dimensions. In addition, we propose a lazy merging
scheme that aims to reduce computation overhead
due to the smaller partition sizes at the later stage of
the partitioning scheme.

� We also provide a complete implementation includ-
ing both serial and parallelized versions which can
be deployed in practical settings. We empirically
study the efficiency and scalability of the implemen-
tations under different parameter settings, verifying
the feasibility of our proposed solutions.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents the related work. Section 3 introdu-
ces background definitions as well as our problem setting.

Fig. 1. Secure similarity queries.

TABLE 1
Sample of Heart Disease Dataset

Fig. 2. Dynamic skyline query.
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The security subprotocols for general functions that will be
used in our secure skyline protocol are introduced in
Section 4. The key subroutine of secure skyline protocols,
secure dominance protocol, is shown in Section 5. The com-
plete secure skyline protocols are presented in Section 6. We
illustrate two optimizations to further reduce the computa-
tion load in Section 7. We report the experimental results
and findings in Section 8. Section 9 concludes the paper.

2 RELATED WORK

Skyline. The skyline computation problem was first studied
in computational geometry field [3], [25] where they
focused on worst-case time complexity. [23], [29] proposed
output-sensitive algorithms achieving Oðn log kÞ in worst-
case where k is the number of skyline points which is far
less than n in general.

Since the introduction of the skyline operator by B€orzs€onyi
et al. [5], skyline has been extensively studied in the database
field. Kossmann et al. [24] studied the progressive algorithm
for skyline queries. Different variants of the skyline problem
have been studied (e.g., subspace skyline [8], uncertain sky-
line [32] [36], group-based skyline [26], [28], [44], skyline dia-
gram [31]).

Secure Query Processing on Encrypted Data. Fully homomor-
phic encryption schemes [15] enable arbitrary computations
on encrypted data. Even though it is shown that [15] we can
build such encryption schemes with polynomial time, they
remain far from practical even with the state of the art imple-
mentations [18].

Many techniques (e.g., [17], [38]) have been proposed to
support specific queries or computations on encrypted data
with varying degrees of security guarantee and efficiency
(e.g., by weaker encryptions). We are not aware of any for-
mal work on secure skyline queries over encrypted data
with semantic security. Bothe et al. [6] and their demo ver-
sion [7] illustrated an approach about skyline queries on so-
called “encrypted” data without any formal security guar-
antee. Another work [9] studied the verification of skyline
query result returned by an untrusted cloud server.

The closely related work is secure kNN queries [12], [19],
[20], [35], [37], [40], [42], [43] which we discuss in more detail
here. Wong et al. [40] proposed a new encryption scheme
called asymmetric scalar-product-preserving encryption. In
their work, data and query are encrypted using slightly differ-
ent encryption schemes and all clients know the private key.
Hu et al. [20] proposed a method based on provably secure
privacy homomorphism encryption scheme. However, both
schemes are vulnerable to the chosen-plaintext attacks as
illustrated by Yao et al. [42]. Yao et al. [42] proposed a new
method based on secure Voronoi diagram. Instead of asking
the cloud server to retrieve the exact kNN result, their method
retrieve a relevant encrypted partition such that it is guaran-
teed to contain the kNN of the query point. Hashem et al. [19]
identified the challenges in preserving user privacy for group
nearest neighbor queries and provided a comprehensive solu-
tion to this problem. Yi et al. [43] proposed solutions for
secure kNN queries based on oblivious transfer paradigm.
Recently, Elmehdwi et al. [12] proposed a secure kNN query
protocol on data encrypted using Paillier cryptosystem that
ensures data privacy and query privacy, as well as low (or no)
computation overhead on client and data owner using two
non-colluding cloud servers. Our work follows this setting
and addresses skyline queries.

Otherworks studied kNNqueries in the securemulti-party
computation (SMC) setting [37] (data is distributed between
two parties who want to cooperatively compute the answers
without revealing to each other their private data), or private
information retrieval (PIR) setting [35] (query is private while
data is public), which are different fromour settings.

Secure Multi-party Computation (SMC). SMC was first pro-
posed by Yao [41] for two-party setting and then extended by
Goldreich et al. [16] to multi-party setting. SMC refers to the
problem where a set of parties with private inputs wish to
compute some joint function of their inputs. There are techni-
ques such as garbled circuits [21] and secret sharing [2] that
can be used for SMC. In this paper, all protocols assume a
two-party setting, but different from the traditional SMC set-
ting. Namely, we have party C1 with encrypted input and
party C2 with the private key sk. The goal is for C1 to obtain an
encrypted result of a function on the input without disclosing
the original input to either C1 or C2.

3 PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we first illustrate some background knowl-
edge on skyline computation and dynamic skyline query,
and then describe the security model we use in this paper.
For references, a summary of notations is given in Table 2.

3.1 Skyline Definitions

Definition 1 (Skyline). Given a dataset P ¼ fp1; :::;png in
m-dimensional space. Let pa and pb be two different points in P ,
we say pa dominates pb, denoted by pa � pb, if for all j, pa½j� �
pb½j�, and for at least one j; pa½j� < pb½j�, where pi½j� is the jth
dimension of pi and 1 � j � m. The skyline points are those
points that are not dominated by any other point inP .

Definition 2 (Dynamic Skyline Query) [11]. Given a data-
set P ¼ fp1; :::;png and a query point q in m-dimensional
space. Let pa and pb be two different points in P , we say pa

dynamically dominates pb with regard to the query point q,

denoted by pa � pb, if for all j, jpa½j� � q½j�j � jpb½j� � q½j�j,
and for at least one j; jpa½j� � q½j�j < jpb½j� � q½j�j, where
pi½j� is the jth dimension of pi and 1 � j � m. The skyline
points are those points that are not dynamically dominated by
any other point in P .

The traditional skyline definition is a special case of
dynamic skyline query in which the query point is the

TABLE 2
The Summary of Notations

Notation Definition

P dataset of n points/tuples/records
pi½j� the jth attribute of pi

q query tuple of client
n number of points in P
m number of dimensions
k number of skyline
l number of bits
K key size
pk=sk public/private key

½½a�� encrypted vector of the individual bits of a
â binary bit

ðaÞðiÞB the ith bit of binary number a
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origin. On the other hand, dynamic skyline query is equiva-
lent to traditional skyline computation if we map the points
to a new space with the query point q as the origin and the
absolute distances to q as mapping functions. So the proto-
cols we will present in the paper also work for traditional
skyline computation (without an explicit query point).

Example 1. Consider Table 1 and Fig. 2 as a running example.
Given data points p1 to p4 and query point q, the mapped
data points are computed as ti½j� ¼ jpi½j� � q½j�j þ q½j�. We
see that t1; t2 are the skyline in themapped space, and p1;p2
are the skylinewith respect to query q in the original space.

3.2 Skyline Computation
Skyline computation has been extensively studied as we dis-
cussed in Section 2.We illustrate an iterative skyline computa-
tion algorithm (Algorithm 1) whichwill be used as the basis of
our secure skyline protocol. We note that this is not the most
efficient algorithm to compute skyline for plaintext compared
to the divide-and-conquer algorithm [25]. We construct our
secure skyline protocol based on this algorithm for two rea-
sons: 1) the divide-and-conquer approach is less suitable if not
impossible for a secure implementation compared to the itera-
tive approach, 2) the performance of the divide-and-conquer
algorithmdeterioratewith the “curse of dimensionality”.

The general idea of Algorithm 1 is to first map the data
points to the new space with the query point as origin (Lines
1-3). Given the new data points, it computes the sum of all
attributes for each tuple SðtiÞ (Line 6) and chooses the tuple
tmin with smallest SðtiÞ as a skyline because no other tuples
can dominate it. It then deletes those tuples dominated by
tmin. The algorithm repeats this process for the remaining
tuples until an empty dataset T is reached.

Algorithm 1. Skyline Computation

Input: A dataset P and a query q.
Output: Skyline of P .

1 for i ¼ 1 to n do
2 for j ¼ 1 tom do
3 ti½j� ¼ jpi½j� � q½j�j;
4 while the dataset T is not empty do
5 for i ¼ 1 to size of dataset T do
6 SðtiÞ ¼

Pm
j¼1 ti½j�;

7 choose the tuple tmin with smallest SðtiÞ as a skyline;
8 add corresponding tuple pmin to the skyline pool;
9 delete those tuples dominated by tmin from T ;
10 delete tuple tmin from T ;
11 return skyline pool;

Example 2. Given the mapped data points t1; :::; t4, we begin
by computing the attribute sum for each tuple as Sðt1Þ ¼
16, Sðt2Þ ¼ 7, Sðt3Þ ¼ 9, and Sðt4Þ ¼ 19. We choose the
tuple with smallest SðtiÞ, i.e., t2, as a skyline tuple, delete t2
from dataset T and add p2 to the skyline pool. We then
delete tuples t3 and t4 from T because they are dominated
by t2. Now, there is only t1 in T . We add p1 to the skyline
pool. After deleting t1 from T , T is empty and the algorithm
terminates. p1 and p2 in the skyline pool are returned as the
query result.

3.3 Problem Setting
We now describe our problem setting for secure skyline
queries over encrypted data. Consider a data owner (e.g.,

hospital, CDC) with a dataset P . Before outsourcing the
data, the data owner encrypts each attribute of each record
pi½j� using a semantically secure public-key cryptosystem.
Fully homomorphic encryption schemes ensure strong
security while enabling arbitrary computations on the
encrypted data. However, the computation cost is prohibi-
tive in practice. Partially homomorphic encryption is much
more efficient but only provides partially (either additive or
multiplicative) homomorphic properties. Among them, we
chose Paillier [33] mainly due to its additive homomorphic
properties as we employ significantly more additions than
multiplications in our protocol. Furthermore, we can also
utilize its homomorphic multiplication between ciphertext
and plaintext. We use pk and sk to denote the public key
and private key, respectively. Data owner sends Epkðpi½j�Þ
for i ¼ 1; :::; n and j ¼ 1; :::;m to cloud server C1.

Consider an authorized client (e.g., physician) who wishes
to query the skyline tuples corresponding to query tuple
q ¼ ðq½1�; :::;q½m�Þ. In order to protect the sensitive query

tuple, the client uses the same public key pk to encrypt the

query tuple and sends EpkðqÞ ¼ ðEpkðq½1�Þ; :::;Epkðq½m�ÞÞ to
cloud server C1.

Our goal is to enable the cloud server to compute and
return the skyline to the client without learning any infor-
mation about the data and the query. In addition to guaran-
teeing the correctness of the result and the efficiency of the
computation, the computation should require no or mini-
mal interaction from the client or the data owner for practi-
cality. To achieve this, we assume there is an additional
non-colluding cloud server, C2, which will hold the private
key sk shared by the data owner and assist with the compu-
tation. This way, the data owner does not need to partici-
pate in any computation. The client also does not need to
participate in any computation except combining the partial
result from C1 and C2 for final result. An overview of the
protocol setting is shown in Fig. 3.

3.4 Security Model
Adversary Model. We adopt the semi-honest adversary model
in our study. In any multi-party computation setting, a
semi-honest party correctly follows the protocol specification,
yet attempts to learn additional information by analyzing
the transcript of messages received during the execution. By
semi-honest model, this work implicitly assumes that the
two cloud servers do not collude.

There are two main reasons to adopt the semi-honest
adversary model in our study. First, developing protocols
under the semi-honest setting is an important first step
towards constructing protocols with stronger security guar-
antees [21]. Using zero-knowledge proofs [14], these protocols
can be transformed into secure protocols under the malicious
model. Second, the semi-honest model is realistic in current
cloud market. C1 and C2 are assumed to be two cloud servers,
which are legitimate, well-known companies (e.g., Amazon,
Google, and Microsoft). A collusion between them is highly

Fig. 3. Overview of protocol setting.
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unlikely. Therefore, following thework done in [12], [27], [45],
we also adopt the semi-honest adversarymodel for this paper.
Please see Security Definition in the Semi-honest Model and
Paillier Cryptosystem in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2018.2857471.

Desired Privacy Properties. Our security goal is to protect
the data and the query as well as the query result from the
cloud servers. We summarize the desired privacy properties
below. After the execution of the entire protocol, the follow-
ing should be achieved.

� Data Privacy. Cloud servers C1 and C2 know nothing
about the exact data except the size pattern, the client
knows nothing about the dataset except the skyline
query result.

� Data Pattern Privacy. Cloud servers C1 and C2 know
nothing about the data patterns (indirect data knowl-
edge) due to intermediate result, e.g., which tuple
dominates which other tuple.

� Query Privacy. Data owner, cloud servers C1 and C2
know nothing about the query tuple q.

� Result Privacy. Cloud servers C1 and C2 know nothing
about the query result, e.g., which tuples are in the
skyline result.

4 BASIC SECURITY SUBPROTOCOLS

In this section, we present a set of secure subprotocols for
computing basic functions on encrypted data that will be
used to construct our secure skyline query protocol. All pro-
tocols assume a two-party setting, namely, C1 with encrypted
input and C2 with the private key sk as shown in Fig. 3. The
goal is for C1 to obtain an encrypted result of a function on the
input without disclosing the original input to either C1 or C2.
We note that this is different from the traditional two-party
secure computation setting with techniques such as garbled
circuits [21] where each party holds a private input and they
wish to compute a function of the inputs. For each function,
we describe the input and output, present our proposed pro-
tocol or provide a reference if existing solutions are available.
Due to limited space, we omit the security proof which can be
derived by the simulation and composition theorem in a
straightforward way. Please see Secure Multiplication
(SM), Secure Bit Decomposition (SBD), and Secure Bool-
ean Operations in the appendix, available in the online
supplemental material.

4.1 Secure Minimum and Secure Comparison
Secure minimum protocol and secure comparison protocol
have been extensively studied in cryptography community
[1], [13], [39] and database community [12], [45]. Secure
comparison protocol can be easily adapted to secure mini-
mum protocol, and vice versa. For example, if we set
EpkðoutÞ as the result of secure comparison EpkðBoolða � bÞÞ
known by cloud server C1 (it will be Epkð1Þ when a � b and
Epkð0Þ when a > b), C1 can get Epkðminða; bÞÞ by computing
Epkða � outþ b � :outÞ.

We analyzed the existing protocols and observed that both
secure minimum (SMIN) algorithms [12], [45] from database
community for selecting a minimum have a security weak-
ness, i.e., C2 can determine whether the two numbers are
equal to each other.We point out the security weakness in the
appendix, available in the online supplementalmaterial.

Therefore, we adapted the secure minimum/comparison
protocols [39] from cryptography community in this paper.
The basic idea of those protocols is that for any two l bit num-
bers a and b, the most significant bit (zl) of z ¼ 2l þ a� b indi-
cates the relationship between a and b, i.e., zl ¼ 0, a < b.
We list the secure minimum/comparison protocols we used
in this paper below.

Secure Less Than or Equal (SLEQ). Assume a cloud server
C1 with encrypted input EpkðaÞ and EpkðbÞ, and a cloud
server C2 with the private key sk, where a and b are two
numbers not known to C1 and C2. The goal of the SLEQ pro-
tocol is to securely compute the encrypted boolean output
EpkðBoolða � bÞÞ, such that only C1 knows EpkðBoolða � bÞÞ
and no information related to a and b is revealed to C1 or C2.

Secure Equal (SEQ). Assume a cloud server C1 with
encrypted inputEpkðaÞ andEpkðbÞ, and a cloud server C2 with
the private key sk, where a and b are two numbers not known
to C1 and C2. The goal of the SEQ protocol is to securely com-
pute the encrypted boolean output EpkðBoolða ¼¼ bÞÞ, such
that only C1 knows EpkðBoolða ¼¼ bÞÞ and no information

related toBoolða ¼¼ bÞ is revealed to C1 or C2.
Secure Less (SLESS). Assume a cloud server C1 with

encrypted input EpkðaÞ and EpkðbÞ, and a cloud server C2
with the private key sk, where a and b are two numbers
not known to C1 and C2. The goal of the SLESS protocol is
to securely compute the encrypted boolean output
EpkðBoolða < bÞÞ, such that only C1 knows EpkðBoolða < bÞÞ
and no information related to Boolða < bÞ is revealed to C1
or C2. This can be simply implemented by conjunction from
the output of SEQ and SLEQ.

Secure Minimum (SMIN). Assume a cloud server C1 with
encrypted input EpkðaÞ and EpkðbÞ, and a cloud server C2
with the private key sk, where a and b are two numbers
not known to both parties. The goal of the SMIN protocol
is to securely compute encrypted minimum value of a and
b, Epkðminða; bÞÞ, such that only C1 knows Epkðminða; bÞÞ
and no information related to a and b is revealed to C1 or

C2. Benefiting from the probabilistic property of Paillier, the

ciphertext of minða; bÞ, i.e., Epkðminða; bÞÞ is different from

the ciphertext of a, b, i.e., EpkðaÞ, EpkðbÞ. Therefore, C1 does

not know which of a or b is minða; bÞ. In general, assume C1
has n encrypted values, the goal of SMIN protocol is to

securely compute encryptedminimumof the n values.

5 SECURE DOMINANCE PROTOCOL

The key to compute skyline is to compute dominance rela-
tionship between two tuples. Assume a cloud server C1 with
encrypted tuples a ¼ ða½1�; :::; a½m�Þ, b ¼ ðb½1�; :::;b½m�Þ and
a cloud server C2 with the private key sk, where a and b are
not known to both parties. The goal of the secure dominance
(SDOM) protocol is to securely compute EpkðBoolða � bÞÞ
such that only C1 knows Epkð1Þ if a � b, otherwise, Epkð0Þ.

Protocol Design. Given any two tuples a ¼ ða½1�; :::; a½m�Þ
and b ¼ ðb½1�; :::;b½m�Þ, recall the definition of skyline, we say
a � b if for all j; a½j� � b½j� and for at least one j,
a½j� < b½j� ð1 � j � mÞ. If for all j; a½j� � b½j�, we have either
a ¼ b or a � b. We refer to this case as a � b. The basic idea of
secure dominance protocol is to first determine whether
a � b, and then determinewhether a ¼ b.

The detailed protocol is shown in Algorithm 2. For each
attribute, C1 and C2 cooperatively use the secure less than or
equal (SLEQ) protocol to compute EpkðBoolða½j� � b½j�ÞÞ.
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And then C1 and C2 cooperatively use SAND to compute
F ¼ d1^; :::;^dm. If F ¼ Epkð1Þ, it means a � b, otherwise,
a fb. We note that, the dominance relationship informa-
tion F is known only to C1 in ciphertext. Therefore, both C1
and C2 do not know any information about whether a � b.

Algorithm 2. Secure Dominance Protocol

Input: C1 has EpkðaÞ; EpkðbÞ and C2 has sk.
Output: C1 gets Epkð1Þ if a � b, otherwise, C1 gets Epkð0Þ.

1 C1 and C2:
2 for j ¼ 1 tom do
3 C1 gets dj ¼ EpkðBoolða½j� � b½j�ÞÞ by SLEQ;
4 use SAND to compute F ¼ d1 ^ :::;^dm;
5 C1:
6 compute a ¼ Epkða½1�Þ	; . . . ;	Epkða½m�Þ;
7 compute b ¼ Epkðb½1�Þ	; . . . ;	Epkðb½m�Þ;
8 C1 and C2:
9 C1 gets s ¼ EpkðBoolða < bÞÞ by employing SLESS;
10 C1 gets C ¼ s ^F as the final dominance relationship using

SAND;

Next, we need to determine if a 6¼ b. Only if a 6¼ b, then
a � b. One naive way is to employ SEQ protocol for each pair
of attribute and then take the conjunction of the output. We
propose a more efficient way which is to check whether
SðaÞ < SðbÞ, where SðaÞ is the attribute sum of tuple a. If
SðaÞ < SðbÞ, then it is impossible that a ¼ b. As the algo-
rithm shows, C1 computes the sum of all attributes a ¼
Epkða½1� þ :::þ a½m�Þ and b ¼ Epkðb½1� þ :::þ b½m�Þ based on
the additive homomorphic property. Then C1 and C2 coopera-
tively use SLESS protocol to compute s ¼ EpkðBoolða < bÞÞ.
Finally, C1 and C2 cooperatively use SAND protocol to com-
pute the final dominance relationship C ¼ s ^F which is
only known to C1 in ciphertext.C ¼ Epkð1Þmeans a � b, oth-
erwise, abb.

Security Analysis. Based on the composition theorem
(Theorem 2), the security of secure dominance protocol relies
on the security of SLEQ, SLESS, and SAND, which have been
shown in existingworks.

Complexity Analysis. To determine a � b, Algorithm 2
requires OðmÞ encryptions and decryptions. Then to deter-
mine if a ¼ b, Algorithm 2 requires Oð1Þ encryptions and
decryptions. Therefore, our secure dominance protocol
requires OðmÞ encryptions and decryptions in total.

6 SECURE SKYLINE PROTOCOL

In this section, we first propose a basic secure skyline protocol
and show why such a simple solution is not secure. Then we
propose a fully secure skyline protocol. Both protocols are
constructed by using the security primitives discussed in
Section 4 and the secure dominance protocol in Section 5.

As mentioned in Algorithm 1, given a skyline query q, it is
equivalent to compute the skyline in a transformed spacewith
the query point q as the origin and the absolute distances to q
as mapping functions. Hence we first show a preprocessing
step in Algorithm 3 which maps the dataset to the new space.
Since the skyline only depends on the order of the attribute
values, we use ðpi½j� � q½j�Þ2 which is easier to compute than
jpi½j� � q½j�j as the mapping function.1 After Algorithm 3, C1
has the encrypted dataset EpkðP Þ and EpkðT Þ, C2 has the

private key sk. The goal is to securely compute the skyline by
C1 and C2 without participation of data owner and the client.

Algorithm 3. Preprocessing

Input: C1 has EpkðP Þ, C2 has sk, and the client has q.
Output: C1 obtains the new encrypted dataset EpkðT Þ.

1 Client:
2 send ðEpkð�q½1�Þ; :::; Epkð�q½m�ÞÞ to C1;
3 C1:
4 for i ¼ 1 to n do
5 for j ¼ 1 tom do
6 Epkðtempi½j�Þ ¼ Epkðpi½j� � q½j�Þ ¼ Epkðpi½j�Þ 	 Epkð�q½j�Þ

modN2;
7 C1 and C2:
8 use SM protocol to compute EpkðT Þ ¼ ðEpkðt1Þ; . . . ; EpkðtnÞÞ

only known by C1, where EpkðtiÞ ¼ ðEpkðti½1�Þ; . . . ; Epkðti½m�ÞÞ
and Epkðti½j�Þ ¼ Epkðtempi½j�Þ 	 Epkðtempi½j�Þ;

6.1 Basic Protocol
We first illustrate a straw-man protocol which is straightfor-
ward but not fully secure (as shown in Algorithm 4). The
idea is to implement each of the steps in Algorithm 1 using
the primitive secure protocols. C1 first determines the termi-
nal condition, if there is no tuple exists in dataset EpkðT Þ,
the protocol ends, otherwise, the protocol proceeds as
follows.

Compute Minimum Attribute Sum. C1 first computes the
sum of Epkðti½j�Þ for 1 � j � m, denoted as EpkðSðtiÞÞ, for
each tuple ti. Then C1 and C2 uses SMIN protocol such that
C1 obtains EpkðSðtminÞÞ.

Select the Skyline with Minimum Attribute Sum. The chal-
lenge now is we need to select the tuple EpkðtminÞ with the
smallest EpkðSðtiÞÞ as a skyline tuple. In order to do this, a
naive way is for C1 to compute EpkðSðtiÞ � SðtminÞÞ for all
tuples and then send them to C2. C2 can decrypt them and
determine which one is equal to 0 and return the index to
C1. C1 then adds the tuple EpkðpminÞ to skyline pool.

Eliminate Dominated Tuples. Once the skyline tuple is
selected, C1 and C2 cooperatively use SDOM protocol to
determine the dominance relationship between EpkðtminÞ
and other tuples. In order to delete those tuples that are
dominated by EpkðtminÞ, a naive way is for C1 to send the
encrypted dominance output to C2, who can decrypt it and
send back the indexes of the tuples who are dominated to
C2. C1 can delete those tuples dominated by EpkðtminÞ and
the tuple EpkðtminÞ from EpkðT Þ. The algorithm continues
until there is no tuples left.

Return Skyline Results to Client. Once C1 has the encrypted
skyline result, it can directly send them to the client if the cli-
ent has the private key. However, in our setting, the client
does not have the private key for better security. Lines 25 to 39
in Algorithm 4 illustrate how the client obliviously obtains
the final skyline query result with the help of C1 and C2, at the
same time, C1 and C2 knownothing about the final result. Con-
sider the skyline tuples Epkðp1Þ; :::; EpkðpkÞ in skyline pool,

where k is the number of skyline. The idea is for C1 to add a

random noise ri½j� to each pi½j� in ciphertext and then sends
the encrypted randomized values ai½j� to C2. C1 also sends the

noise ri½j� to client. At the same time, C2 decrypts the random-

ized values ai½j� and sends the result r0i½j� to client. Client1. We use jpi½j� � q½j�j in our running example for simplicity.
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receives the random noise ri½j� from C1 and randomized val-

ues of the skyline points ai½j� from C2, and removes the noise

by computing pi½j� ¼ r0i½j� � ri½j� for i ¼ 1; :::; k and j ¼ 1;

:::;m as the final result.

Algorithm 4. Basic Secure Skyline Protocol

Input: C1 has EpkðP Þ; EpkðT Þ and C2 has sk.
Output: client knows the skyline query result.
1 Compute minimum attribute sum;
2 C1:
3 if there is no tuple in EpkðT Þ then
4 break;
5 for i ¼ 1 to n do
6 EpkðSðtiÞÞ ¼ Epkðti½1�Þ 	 :::	 Epkðti½m�ÞmodN2;
7 C1 and C2:
8 EpkðSðtminÞÞ ¼ SMINðEpkðSðt1ÞÞ; :::; EpkðSðtnÞÞÞ;
9 Select the skyline with minimum attribute sum;
10 C1:
11 for i ¼ 1 to n do
12 ai ¼ EpkðSðtminÞÞN�1 	 EpkðSðtiÞÞmodN2;

13 a0i ¼ a
ri
i modN2, where ri 2 ZþN ;

14 send a0 to C2;
15 C2:
16 decrypt a0 and tell C1 which one equals to 0;
17 C1:
18 add the corresponding EpkðpminÞ to the skyline pool;
19 Eliminate dominated tuples;
20 C1 and C2:
21 use SDOM protocol to determine the dominance relation-

ship between EpkðtminÞ and other tuples;
22 delete those tuples dominated by EpkðtminÞ and EpkðtminÞ;
23 GOTO Line 1;
24 Return skyline results to client;
25 C1:
26 for i ¼ 1 to k do
27 for j ¼ 1 tom do
28 ai½j� ¼ Epkðpi½j�Þ 	 Epkðri½j�ÞmodN2, where ri½j� 2 ZþN ;
29 send ai½j� to C2 and ri½j� to client for all i ¼ 1; . . . ; k; j ¼ 1;

. . . ;m;
30 C2:
31 for i ¼ 1 to k do
32 for j ¼ 1 tom do
33 ri½j�0 ¼ Dskðai½j�Þ;
34 send ri½j�0 to client;
35 Client:
36 receive ri½j� from C1 and ri½j�0 from C2;
37 for i ¼ 1 to k do
38 for j ¼ 1 tom do
39 pi½j� ¼ ri½j�0 � ri½j�;

6.2 Fully Secure Skyline Protocol
The basic protocol clearly reveals several information to C1
and C2 as follows.

� When selecting the skyline tuple with minimum
attribute sum, C1 and C2 know which tuples are sky-
line points, which violates our result privacy
requirement.

� When eliminating dominated tuples, C1 and C2 know
the dominance relationship among tuples with
respect to the query tuple q, which violates our data
pattern privacy requirement.

Algorithm 5. Fully Secure Skyline Protocol

Input: C1 has EpkðP Þ; EpkðT Þ and C2 has sk.
Output: C1 knows the encrypted skyline EpkðpskyÞ.

1 Order preserving perturbation;
2 C1:
3 for i ¼ 1 to n do
4 EpkðSðtiÞÞ ¼ Epkðti½1�Þ 	 :::	 Epkðti½m�ÞmodN2;
5 C1 and C2:
6 for i ¼ 1 to n do
7 ½½EpkðSðtiÞÞ�� ¼ SBDðEpkðSðtiÞÞÞ;
8 C1:
9 for i ¼ 1 to n do
10 ½½EpkðSðtiÞÞ�� ¼ hEpkððSðtiÞÞð1ÞB Þ; :::; EpkððSðtiÞÞðlÞB Þ;

EpkððSðtiÞÞðlþ1ÞB Þ; :::; EpkððSðtiÞÞðlþdlogneÞB Þi, where

ðSðtiÞÞðlþ1ÞB ; :::; ðSðtiÞÞðlþdlogneÞB is the binary representation

of an exclusive vale of ½0; n� 1�;
11 EpkðSðtiÞÞ ¼

Ql
g¼1 EpkððSðtiÞÞðgÞB Þ2

l�g
modN2;

12 C1 and C2:
13 EpkðSðtminÞÞ ¼ SMINðEpkðSðt1ÞÞ; :::; EpkðSðtnÞÞ;
14 C1:
15 � ¼ ðEpkðSðtminÞÞ 	 EpkðMAXÞ�1Þr modN2, where ri 2 ZþN ;
16 send � to C2;
17 C2:
18 ifDskð�Þ ¼ 0 then
19 break;
20 Select skyline with minimum attribute sum;
21 ðEpkðpskyÞ; EpkðtskyÞÞ ¼FindOneSkyline

ðEpkðP Þ; EpkðT Þ; EpkðSðtiÞÞ; EpkðSðtminÞÞÞ (Algorithm 6);

22 Eliminate dominated tuples;
23 C1 and C2:
24 for i ¼ 1 to n do
25 for g ¼ 1 to l do
26 EpkððSðtiÞÞðgÞB Þ ¼ SORðVi; EpkððSðtiÞÞðgÞB ÞÞ;
27 C1:
28 for i ¼ 1 to n do
29 EpkðSðtiÞÞ ¼

Ql
g¼1 EpkððSðtiÞÞðgÞB Þ2

l�g
modN2;

30 C1 and C2:
31 for i ¼ 1 to n do
32 Vi ¼ SDOMðEpkðtskyÞ; EpkðtiÞÞ;
33 Lines 23-32;
34 GOTO Line 1;

To address these leakage, we propose a fully secure pro-
tocol in Algorithm 5. The step to compute minimum attri-
bute sum and return the results to the client are the same as
the basic protocol. We focus on the following steps that are
designed to address the disclosures of the basic protocol.

Select Skyline with Minimum Attribute Sum.Once C1 obtains
the encrypted minimum attribute sum EpkðSðtminÞÞ, the chal-
lenge is how to select the tuple EpkðtminÞ with the minimum
sum EpkðSðtminÞÞ as a skyline tuple such that C1 and C2 know
nothing about which tuple is selected. We present a protocol
as shown inAlgorithm 6.

We first need to determine which SðtiÞ is equal to SðtminÞ.
Note that this can not be achieved by the SMIN protocol
which only selects the minimum value. Here we propose an
efficient way, exploiting the fact that it is okay for C2 to know
there is one equal case (since we are selecting one skyline
tuple) as long as it does not knowwhich one. C1 first computes
a0i ¼ EpkððSðtiÞ � SðtminÞÞ 	 riÞ, and then sends a permuted

list b ¼ pða0Þ to C2 based on a random permutation sequence
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p. The permutation hideswhich sum is equal to theminimum
from C2 while the uniformly randomnoise ri masks the differ-
ence between each sumand theminimumsum.Note that a0i is
uniformly random in ZþN except when SðtiÞ � SðtminÞ ¼ 0, in
which case a0i ¼ 0. C1 decrypts bi, if it is 0, it means tuple i has
smallest EpkðSðtiÞÞ. Therefore, C2 sends Epkð1Þ to C1, other-
wise, sendsEpkð0Þ.

Algorithm 6. Find One Skyline

Input: C1 has encrypted dataset EpkðP Þ, EpkðT Þ, EpkðSðtiÞÞ,
and EpkðSðtminÞÞ, C2 has private key sk.

Output: C1 knows one encrypted skyline EpkðpskyÞ and
EpkðtskyÞ.

1 C1:
2 for i ¼ 1 to n do
3 ai ¼ EpkðSðtminÞÞN�1 	 EpkðSðtiÞÞmodN2;

4 a0i ¼ a
ri
i modN2, where ri 2 ZþN ;

5 send b ¼ pða0Þ to C2;
6 C2:
7 receive b from C1;
8 for i ¼ 1 to n do
9 b0i ¼ DskðbiÞ;
10 if b0i ¼ 0 then
11 Ui ¼ Epkð1Þ;
12 else
13 Ui ¼ Epkð0Þ;
14 send U to C1;
15 C1:
16 receive U from C2;
17 V ¼ p�1ðUÞ;
18 for i ¼ 1 to n do
19 for j ¼ 1 tom do
20 Epkðti½j�0Þ ¼ SMðVi; Epkðti½j�ÞÞ;
21 Epkðpi½j�0Þ ¼ SMðVi; Epkðpi½j�ÞÞ;
22 for j ¼ 1 tom do
23 Epkðt½j�0Þ ¼

Qn
i¼1 Epkðti½j�0ÞmodN2;

24 Epkðp½j�0Þ ¼
Qn

i¼1 Epkðpi½j�0ÞmodN2;

25 add EpkðpskyÞ ¼ hEpkðp½1�0Þ; :::; Epkðp½m�0Þi to skyline pool;

26 use EpkðtskyÞ ¼ hEpkðt½1�0Þ; :::; Epkðt½m�0Þi to compare with

other EpkðtiÞ;

After receiving the encrypted permuted bit vector U as the
equality result, C1 applies a reverse permutation, and obtains
an encrypted bit vector V , where one tuple has bit 1 suggest-
ing it has the minimum sum. In order to obtain the attribute
values of this tuple, C1 and C2 employ SMprotocol to compute
encrypted product of the bit vector and the attribute values,
Epkðti½j�0Þ and Epkðpi½j�0Þ. Since all other tuples except the one
with the minimum sum will be 0, we can sum all Epkðti½j�0Þ
and Epkðpi½j�0Þ on each attribute and C1 can obtain the attri-
bute values corresponding to the skyline tuple.

Order Preserving Perturbation.Wecan show thatAlgorithm6
is secure and correctly selects the skyline tuple if there is only
one minimum. A potential issue is that multiple tuples may
have the same minimum sum. If this happens, not only is this
information revealed to C2, but also the skyline tuple cannot be
selected (computed) correctly, since the bit vector contains
more than one 1 bit. To address this, we employ order-
preserving perturbationwhich adds a set ofmutually different
bit sequence to a set of values such that: 1) if the original values
are equal to each other, the perturbed values are guaranteed

not equal to each other, and 2) if the original values are not
equal to each other, their order is preserved. The perturbed
values are then used as the input for Algorithm 6.

Concretely, given n numbers in their binary representa-
tions, we add a dlog ne-bit sequence to the end of each
EpkðSðtiÞÞ, each represents a unique bit sequence in the range

of ½0; n� 1�. This way, the perturbed values are guaranteed to

be different from each other while their order is preserved
since the added bits are the least significant bits. Line 10 of
Algorithm 5 shows this step. We note that we can multiply
each sum EpkðSðtiÞÞ by n and uniquely add a value from

½0; n� 1� to each EpkðSðtiÞÞ, hence guarantee they are not

equal to each other. This will be more efficient than adding a
bit sequence, however, since we will need to perform the bit
decomposition later in the protocol to allow bit operators, we
run decomposition by the SBD protocol for l bits in the begin-
ning of the protocol rather than lþ dlogne bits later.

‘Eliminate Dominated Tuples. Once the skyline tuple is
selected, it can be added to the skyline pool and then used to
eliminate dominated tuples. In order to do this, C1 and C2
cooperatively use SDOM protocol to determine the domi-
nance relationship between EpkðtminÞ and other tuples. The
challenge is then how to eliminate the dominated tupleswith-
out C1 and C2 knowingwhich tuples are being dominated and
eliminated. Our idea is that instead of eliminating the domi-
nated tuples,we “flag” themby securely setting their attribute
values to themaximumdomain value. Thisway, theywill not
be selected as skyline tuples in the remaining iterations. Con-
cretely, we can set the binary representation of their attribute
sum to all 1s so that it represents the domainmaximum. Since

we added dlogne bits to ½½EpkðSðtiÞÞ��, the new ½½EpkðSðtiÞÞ��
has lþ dlogne bits. Therefore, the maximum value MAX ¼
2lþdlogne � 1. To obliviously set the attributes of only domi-
nated tuples toMAX, based on the encrypted dominance out-
put Vi of the dominance protocol, C1 and C2 cooperatively
employ SOR of the dominance boolean output and the bits of
the SðtiÞ. This way, if the tuple is dominated, it will be set to
MAX. Otherwise, it will remain the same. If EpkðSðtminÞÞ ¼
EpkðMAXÞ, it means all the tuples are processed, i.e., flagged
either as a skyline or a dominated tuple, the protocol ends.

Example 3.We illustrate the entire protocol through the run-
ning example shown in Table 3. Please note that all column
values are in encrypted form except columns p and b0.
Given the mapped data points ti, C1 first computes the
attribute sum EpkðSðtiÞÞ shown in the third column. We
set l ¼ 5, C1 gets the binary representation of the attribute
sum ½½EpkðSðtiÞÞ��. Because n ¼ 4, C1 obliviously adds the
order-preserving perturbation dlog 4e ¼ 2 bits to the end of
½½EpkðSðtiÞÞ�� respectively to get the new EpkðSðtiÞÞ (shown

in the sixth column). Then C1 gets EpkðSðtminÞÞ ¼ Epkð30Þ
by employing SMIN.

The protocol then turns to the subroutine Algorithm 6 to
select the first skyline based on the minimum attribute
sum. C1 computes ai ¼ EpkðSðtiÞ � SðtminÞÞ. Assume the

random noise vector r ¼ h3; 9; 31; 2i and the permutation

sequence p ¼ h2; 1; 4; 3i, C1 sends the encrypted permuted

and randomized difference vector b to C2. After decrypting

b, C2 gets b0 and then sends U to C1. C1 computes V by

applying a reverse permutation. By employing SMwith V ,

C1 computes ðEpkðti½1�0Þ; Epkðti½2�0ÞÞ and ðEpkðpi½1�0Þ; Epkðpi½2�0ÞÞ.
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After summing all column values, C1 adds EpkðpskyÞ ¼
ðEpkð39Þ, Epkð120ÞÞ to skyline pool and uses EpkðtskyÞ ¼
ðEpkð2Þ;Epkð5ÞÞ to eliminate dominated tuples.

The protocol now turns back to the main routine in
Algorithm 5 to eliminate dominated tuples. C1 and C2 use
SORwith V to make EpkðSðtminÞÞ ¼ Epkð127Þ and EpkðSðtiÞÞ ¼
EpkðSðtiÞÞ for i 6¼ min. Now, only EpkðSðtminÞÞ ¼ EpkðSðt2ÞÞ
has changed to Epkð127Þ which is “flagged” as MAX. We

emphasize that C1 does not know this value has changed

because the ciphertext of all tuples has changed. Next, C1
and C2 find the dominance relationship between EpkðtskyÞ
and EpkðtiÞ by SDOM protocol. C1 obtains the dominance

vector V . Using same method, C1 flags EpkðSðt3ÞÞ and

EpkðSðt4ÞÞ to Epkð127Þ. The protocol continues until all are
set toMAX.

Security Analysis. Based on Theorem 1, the protocol is
secure if the subprotocols are secure and the intermediate
results are random or pseudo-random.We focus on the inter-
mediate result here. From C1’s view, the intermediate result
includes U . Because U is ciphertext and C1 does not have the
secret key, C1 can simulate U based on its input and output.
From C2’s view, the intermediate result includes b. b contains
one Epkð0Þ and m� 1 ciphertext of any positive value. After
the permutation p of C1, C2 cannot determine where is the
Epkð0Þ. Therefore, C2 can simulate b based on its input and
output. Hence the protocol is secure.

Computational Complexity Analysis. The subroutine
Algorithm 6 requires OðnÞ decryptions in Line 9, OðnmÞ
encryptions and decryptions in Lines 20 and 21. Thus,
Algorithm 6 requires OðnmÞ encryptions and decryptions in
all. In Algorithm 5, Line 7 requires OðnlÞ encryptions and
decryptions. Line 10 requires OðndlogneÞ encryptions.
Line 12 requires Oððlþ dlogneÞnÞ encryptions and decryp-
tions. Line 26 requires Oðlþ dlogneÞ encryptions and
decryptions. Line 32 requires OðnmÞ encryptions and
decryptions. Thus, this part requires Oððlþ dlogneÞnþ nmÞ
encryptions and decryptions. Because this part runs k times,
the fully secure skyline protocol requires Oðkðlþ dlogneÞnþ
knmÞ encryptions and decryptions in total.

7 PERFORMANCE ANALYSIS AND OPTIMIZATIONS

In this section, we illustrate two optimizations to further
reduce the computation load. We first show a data partition-
ing optimization in Section 7.1, and then show a lazy merg-
ing optimization in Section 7.2.

7.1 Optimization of Data Partitioning
As shown in the previous section, the overall run time com-
plexity depends on the number of points (n), the number of
skyline points (k), the number of decomposed bits (l) which

is determined by the domain of the attribute values, and the
number of dimensions (m). A straightforward way to
enhance the performance is to partition the input dataset
into subdatasets and then we can use a divide-and-conquer
approach to avoid unnecessary computations. Furthermore,
the partitioning also allows effective parallelism.

Algorithm 7. Parallel Implementation via Data Partitioning

Input: A dataset P of n points inm dimensions.
Output: Skyline of P .
1 divide n points into s partitions and compute the skyline

points in each partition;
2 set the state of all partitions as uncomputed;
3 np  number of uncomputed partitions;
4 nt  number of threads;
5 nit  number of idle threads;
6 num  number of computed and unmerged results;
7 while np > 0 or nit > 0 do
8 if np > 0 and nit > 0 then
9 assign one uncomputed partition to each idle thread;
10 else
11 if np ¼¼ 0 and nit ¼¼ nt � 1 and num ¼¼ 0 then
12 break;
13 wait until at least one thread finishes;
14 set the state of computed partition as unmerged;
15 if num > 1 then
16 merge each two into one new partition;
17 set new partition state as uncomputed;

The basic idea of data partitioning is to divide the dataset
into a set of initial partitions, compute the skyline in each
partition, and then continuously merge the skyline result of
the partitions into new partitions and compute their skyline,
until all partitions are merged into the final result. This can
be implemented with either a single thread (sequentially) or
multiple threads (in parallel). We describe our data parti-
tioning scheme in Algorithm 7. Given an input dataset, the
number of partitions s is specified as one parameter. We
will show how to calculate the optimal number of partitions
in Subsection 7.1.1. We first divide the input data into s par-
titions and compute the skyline in each partition in Line 1,
and then set the state of all partitions as uncomputed in
Line 2. In Line 7, the algorithm continues with uncomputed
partitions or idle threads. In Line 8, if there are some
uncomputed partitions and there are some idle threads, we
assign one uncomputed partition to each idle thread in Line
9. In Line 11, if there is no uncomputed partition (np ¼¼ 0),
all computed partitions are merged (num ¼¼ 0), and there is
only one working thread (nit ¼¼ nt � 1), that means all par-
titions are computed and merged, the algorithm finishes.
Otherwise, we wait until at least one thread finishes and set
the state of computed partition which now only contains

TABLE 3
Example of Algorithm 5

C1: C2: C1:
ti ðti½1�; ti½2�Þ SðtiÞ ½½SðtiÞ�� pert. SðtiÞ SðtiÞ � SðtminÞ r p b0 U V ðti½1�0; ti½2�0Þ ðpi½1�0;pi½2�0Þ SðtiÞ V SðtiÞ
t1 ð1; 15Þ 16 1,0,0,0,0 1,1 67 67� 30 3 2 0 1 0 ð0; 0Þ ð0; 0Þ 67 0 67
t2 ð2; 5Þ 7 0,0,1,1,1 1,0 30 30� 30 9 1 111 0 1 ð2; 5Þ ð39; 120Þ 127 0 127
t3 ð4; 5Þ 9 0,1,0,0,1 0,1 37 37� 30 31 4 92 0 0 ð0; 0Þ ð0; 0Þ 37 1 127
t4 ð4; 15Þ 19 1,0,0,1,1 0,0 76 76� 30 2 3 217 0 0 ð0; 0Þ ð0; 0Þ 76 1 127
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skylines in that partition as unmerged in Lines 13-14. In
Line 15, if there are some computed and unmerged parti-
tions, we merge each two into one new partition and set the
state as uncomputed in Lines 16-17.

7.1.1 Discovery of Optimal Number of Partitions

In this subsection, we show how to calculate the optimal
number of partitions for minimizing the total computation
load given an independent and identically distributed ran-
dom dataset. We first show the theorem of the expected
number of skyline points as follows.

Theorem 1 (Number of Skyline Points) [4]. Given an inde-
pendent and identically distributed random dataset of n points
in m dimensional space, the expected number of skyline points
is Oðlnm�1nÞ.
In the computational complexity analysis of fully secure

skyline protocol, the time complexity is Oðknðlþmþ
dlogneÞÞ. According to Theorem 1, the expected output size
of input data with size n

s in m dimensional space is lnm�1ðnsÞ.
Therefore, in this step, the computation load required for

each partition is lnm�1ðnsÞ 	 n
s 	 ðlogðnsÞ þmþ lÞ. Since we

have s partitions, the total computation load required is

s	 lnm�1ðnsÞ 	 n
s 	 ðlog ðnsÞ þmþ lÞ ¼ n	 lnm�1ðnsÞ 	 ðlog ðnsÞ þmþ lÞ.

This is the initial layer of the computation, which we refer to
layer0. We use 0 because the following layers have a slightly
different formula.

Before we proceed, we denote the number of layers
excluding layer0 as nlayer. For each layer i, we denote the
number of partitions that needs to be computed as np;i, the
size of a single input partition as sizein;i, the output size of a
single partition as sizeout;i, and the amount of computation
load as Wlayeri . A visual graph about the layer structure is
shown in Fig. 4. In the ideal case, we have s ¼ 2h partitions,
where h is an integer. For each layer, we reduce the number
of partitions by merging two partitions to form a new parti-
tion which contains skyline points of those two merged par-
titions. After h layers’ merging, we obtain only one partition
which is the final skyline result.

Number of Partitions and Layers. To simplify the analysis, we
assume the merging of two partitions happens at the same
layer (although mergings from different layers may happen
at the same time). As shown in Fig. 4, the datasets for layeri
(i > 1) comes from the merging of two computed partitions
from layeri�1. Therefore, in layeri, the number of partitions
(np;i) is

s
2i
given the number of partitions in layer1 is

s
2. Mean-

while, layer0 has s partitions, layer1 has
s
2 partitions, and the

last layer has one partition, so the number of layers excluding
layer0 (nlayer) is log s.

Output Size. A partition in layeri is merged from 2i parti-
tions in layer0. Therefore, the expected output size of one par-
tition at layeri corresponds to the expected output size of 2i

partitions in layer0. That is, in layeri, the expected output size

of a single partition (sizeout;i) is ln
m�1ð2ins Þ.

Input Size. In layeri, the size of each input partition (sizein;i)
is twice of the single partition output size from the last layer
because it is the merging of two outputs from the last layer. In

other words, sizein;i ¼ 2	 sizeout;i�1 = 2	 lnm�1ð2i�1ns Þ. For
example, the expected single partition output size of layer0 is

lnm�1ðnsÞ and the expected size of each input partition in layer1
is 2	 lnm�1ðnsÞ.

Computation Load. With np;i, sizein;i, and sizeout;i, we can
obtain the general formula for computation load of layeri
(i 6¼ 0) as Wlayeri = np;i 	 sizeout;i 	 sizein;i 	 ðmþ log ðsizein;iÞÞ
according to the time complexity of our fully secure skyline
protocol. And since we have nlayer layers, the overall com-
putation load is calculated as follows.

Wall ¼Wlayer0 þ
Xnlayer
1

Wlayeri

¼Wlayer0 þ
Xnlayer
1

np;i 	 sizeout;i 	 sizein;i 	 ðmþ log ðsizein;iÞÞ

¼ n	 lnm�1
n

s

� �
	 log

n

s
þmþ l

� �
þ
Xlog s
i¼1

s

2i
	 lnm�1

2in

s

� �

	 2lnm�1 2i�1n
s

� �
	 log 2lnm�1 2i�1n

s

� �� �
þmþ l

� �

Optimal Number of Partitions. Without loss of generality,
from now on, we assume n ¼ 2u and s ¼ 2v, where u; v 2 Zþ

and 1 � v < u. To find out the optimal number of partitions,
our goal is tominimizeWall against s or v. Because n ¼ 2u and
s ¼ 2v, we have the computation loadWðvÞ corresponding to
the number of partition s ¼ 2v as follows.

WðvÞ ¼2u 	 ðu� vÞm�1 	 lnm�12	 ðu� vþmþ lÞ

þ
Xv
i¼1

2v�iþ1 	 ðiþ u� vÞm�1 	 ði� 1þ u� vÞm�1

	 ln2m�22	 ðlog ð2	 ði� 1þ u� vÞm�1 lnm�12Þ þmþ lÞ

We denote the part after
P

as WIv;i. Notice that WIv;i ¼
WIvþ1;iþ1, we have

Wðvþ 1Þ �WðvÞ ¼Wlayer0;vþ1 �Wlayer0;v þ
Xvþ1
i¼1

WIvþ1;i �
Xv
i¼1

WIv;i

¼Wlayer0;vþ1 �Wlayer0;v þWIvþ1;1

Fig. 4. Layer structure (interResult is short for intermediate result).
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Notice that the minimal value of W lies at the position
where Wðvþ 1Þ �WðvÞ changes from negative to positive.
Observe that in our setting, all variables can only be positive
integer, which means we need to find out the integer v such
that fðvÞ ¼W ðvþ 1Þ �WðvÞ changes from negative to posi-
tive. By letting x ¼ u� v, we have

fðxÞ ¼ WIvþ1;1 þWlayer0;vþ1 �Wlayer0;v

¼ 2vþ1 	 ðxÞm�1 	 ðx� 1Þm�1 	 ln2m�22

	 ðlog ð2	 ðx� 1Þm�1lnm�12Þ þmþ lÞ
þ 2u 	 ðx� 1Þm�1 	 lnm�12	 ðx� 1þmþ lÞ
� 2u 	 xm�1 	 lnm�12	 ðxþmþ lÞ

¼ 2ulnm�12	 ð21�x 	 xm�1 	 ðx� 1Þm�1 	 lnm�12

	 ðlog ð2	 ðx� 1Þm�1lnm�12Þ þmþ lÞ
þ ððx� 1Þm�1 	 ðx� 1þmþ lÞ � xm�1 	 ðxþmþ lÞÞÞ

To obtain the minimal value of fðxÞ, we can ignore the
preceding 2u lnm�12 which is always positive. Then we can
easily solve the problem to find out x where fðxÞ changes
from positive to negative givenm and l.

For example, we set l ¼ 20 in our experiments, if m ¼ 2,
then the minimal value of WðvÞ is obtained at x ¼ 1, i.e.,
u� v ¼ 1. This actually corresponds to the casewhere each ini-
tial partition has two data points. Ifm ¼ 3, we have x ¼ 6, i.e.,
u� v ¼ 6. That is, for three dimensional datasets, the optimal
number of partitions is 2u�6 and each partition has 26 points.

7.2 Optimization of Lazy Merging
In this subsection, we show another optimization with lazy
merging.

Lazy Merging. In the hierarchical divide-and-conquer
approach proposed in the last subsection, results from any
two computed partitions are merged immediately as a new
partition for computing skyline points. However, immedi-
ate merging might not be optimal in the later stage of the
program because it requires 1) more merging overhead and
2) more unnecessary computations. In the later stage of the
program, there are only a few points in each partition. At
this time, merging overhead is high compared to the com-
putation time. Therefore, we can employ lazy merging
which incurs less merging overhead. Furthermore, in the
later stage of the program, those remaining points are likely
to follow an anti-correlated distribution as they are skyline
points of a partition at a previous layer. For anti-correlated
dataset, data partitioning will incur more unnecessary com-
putations. Consider an extreme example, if all the remain-
ing points are the final skyline points, all the computations
in each partition are unnecessary. Therefore, we can employ
lazy merging to avoid those unnecessary computations and
delay the merging operation to a later time when more com-
puted results are ready.

Merging Timing. With lazy merging, we can reduce run-
ning time if and only if the timing for lazy merging is perfect.
Merging too early (immediate merging) or merging too late
does not provide enough benefit or even jeopardizes the per-
formance. As shown in the last subsection, for a given dataset,
we can calculate the optimal number of partitions, which is
related to the dataset size. For example, given l ¼ 20 and
m ¼ 3, we have the number of optimal partitions as n

26
, which

effectively states that the optimal size of each partition should

be 26 ¼ 64 in the initial layer. Therefore, in our algorithm, we
heuristically wait until the size of merged partitions reach 64
before sending it for computation in the previous example.
That is, there are at least 64 points in each partition (excluding
the final partition which contains the final skyline points) to
compute the skyline points.

Security Analysis. The cloud servers can tell if the subsets
are skew or uniformly distributed in the extreme case when
the distribution of entire dataset is different from the distri-
bution of subsets based on the different number of returned
skyline points from each partition. However, the probability
is very low because we randomly partition the dataset, and
the distribution of subsets should be very similar to the dis-
tribution of entire dataset. Moreover, this attack can be eas-
ily fixed by returning all the tuples in each iteration. That is,
cloud servers C1 and C2 return all skyline tuples with true
values and non-skyline tuples with MAX values. In this
way, the cloud servers cannot know the skyline distribution
of subsets, thus, the cloud servers cannot get any new infor-
mation from the partitions.

8 EXPERIMENTS

In this section, we describe our experimental setup and opti-
mized parallel system design. For comparison purposes, we
have implemented both protocols: the Basic Secure Skyline
Protocol (BSSP) in Section 6.1, and the Fully Secure Skyline
Protocol (FSSP) in Section 6.2. Since there is no existing solu-
tion for secure skyline computation, we use the basic
approach as a baseline which is efficient but leaks some
indirect data patterns to the cloud server. We have also
designed a parallel framework for effective reducing com-
putation time together with the two optimizations, data par-
titioning and lazy merging.

8.1 Experiment Setup
We implemented all algorithms in C with all multithreading
using POSIX threads and all communication using sockets.
We ran single-machine-experiments on a machine with Intel
Core i7-6700K 4.0 GHz running Ubuntu 16.04. The distrib-
uted version was tested on a cluster of 64 machines with
Intel Core i7-2600 3.40 GHz running CentOS 6, which we
will provide more details in the next section. In our experi-
ment setup, both C1 and C2 were running on the same
machine. The reported computation time is the total compu-
tation time of the C1 and C2.

Datasets.We used both synthetic datasets and a real NBA
dataset in our experiments. To study the scalability of our
methods, we generated independent (INDE), correlated
(CORR), and anti-correlated (ANTI) datasets following the
seminal work [5]. We also built a dataset that contains 2384
NBA players who are league leaders of playoffs.2 Each
player has five attributes that measure the player’s perfor-
mance: Points (PTS), Rebounds (REB), Assists (AST), Steals
(STL), and Blocks (BLK).

Data Partitioning. This procedure can be done either
using single thread or multiple threads. We conducted sin-
gle thread experiment for verifying the optimal number of
partitions. And we refer to multithreading implementation
as local parallelism. The algorithm is shown in Algorithm 7.

2. The data was extracted from http://stats.nba.com/leaders /all-
time/?ls=iref:nba:gnav on 04/15/2015
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To further demonstrate the scalability of our algorithm, we
also implemented a distributed version, which employs a
manager-worker model. The manager distributes parti-
tions to workers, the workers compute the skyline points
in any given dataset and return the results to the manager,
which works similarly as the local parallelism. The only
difference is that the manager could implement sophisti-
cated load balancing algorithm to fully utilize the compu-
tation resources. The overall data partitioning scheme is
very similar to the existing MapReduce approach. How-
ever, we didn’t employ existing MapReduce framework

because existing crypto library in Java does not satisfy our
requirements.

Lazy Merging. The lazy merging delays the merging oper-
ation until there are enough results to form a partition with
optimal size, which is detailed shown in Section 7.1.1. All
experiments using optimizations are conducted using 10
different independent and identically distributed random
datasets of size 512 and dimension 3 with three repeated
runs for each dataset.

8.2 Impact of Parameters
In this subsection, we evaluate our protocols by varying the
number of tuples (n), the number of dimensions (m), and
the key size (K) on datasets of various distributions.

Impact of Number of Tuples n. Fig. 6a, 6b, 6c, 6d show the
time cost of different n on CORR, INDE, ANTI, and NBA
datasets, respectively. We observe that for all datasets, the
time cost increases approximately linearly with the number
of tuples n, which is consistent with our complexity analy-
sis. While BSSP is very efficient, FSSP does incur more
computational overhead for full security. Comparing differ-
ent datasets, the time cost is in slightly increasing order for
CORR, INDE, and ANTI, due to the increasing number of
skyline points of the datasets. The time for NBA dataset is
low due to its small number of tuples.

Impact of Number of Dimensions m. Fig. 7a, 7b, 7c, 7d show
the time cost of differentm on CORR, INDE, ANTI, and NBA

Fig. 5. Computation and communication time cost of different
nðm ¼ 2;K ¼ 512Þ.

Fig. 6. The impact of nðm ¼ 2;K ¼ 512Þ.

Fig. 7. The impact ofmðn ¼ 1000;K ¼ 512Þ.

Fig. 8. The impact ofKðn ¼ 1000;m ¼ 2Þ.

1408 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 7, JULY 2019



datasets, respectively. For all datasets, the time cost increases
approximately linearly with the number of dimensions m.
FSSP also shows more computational overhead than BSSP.
The different datasets show a similar comparison as in Fig. 6.
The time for NBA dataset is lower than the CORR dataset
which suggests that theNBAdata is strongly correlated.

Impact of Encryption Key Size K. Fig. 8a, 8b, 8c, 8d show
the time cost with different key size used in the Paillier
cryptosystem on CORR, INDE, ANTI, and NBA datasets,
respectively. A stronger security indeed comes at the price
of computation overhead, i.e., the time cost increases signifi-
cantly, almost exponential, whenK grows.

Communication Overhead. We also measured the overall
time which includes computation time reported earlier and
the communication time between the two server processes.
Fig. 5 shows the computation and communication time of
different n on INDE dataset of FSSP. We observe that
computation time only takes about one third of the total time
in this setting.

8.3 Effect of Optimizations
In this subsection, we evaluate the efficiency of our proposed
two optimizations, data partitioning and lazymerging.

Data Partitioning. Fig. 9 shows the relationship between
theoretical computation load and real computation time.
The theoretical computation load has an optimal value at
the partition 29�6 ¼ 8, which indicates dividing the original
dataset into 8 partitions will give the smallest amount of
computation load. Using ten datasets and three repeated
runs for each dataset, we obtained the real computation
time, which perfectly matches the theoretical computation
load at the region with small number of partitions. With
large number of partitions, the experimental results devi-
ate from theoretical derivations. The reason for the devia-
tion is that when the number of points in each partition is
too small for large number of partitions, the number of
skyline points in each partition violates our assumption of

data distribution. For example, it is hard to say a dataset
with only five points is an independent and identically dis-
tributed random dataset. Therefore, computation time for
each partition does not follow our derivation. Further-
more, the large number of partitions will incur more merg-
ing overhead.

Lazy Merging. As yet another optimization, lazy merging
plays an important role especially when the number of par-
titions is large. In Fig. 10, we show the computation time
with and without lazy merging, respectively. It can be seen
that overall with lazy merging, the run time can be effec-
tively reduced. The larger number of partitions, the larger
number of time difference, which is reasonable because the
larger number of partitions, the larger number of merging
operations and more rounds of computation. We can also
see that for one partition (no partition) and two partitions,
there is no time reduction, the reasons are that there is no
merging operation need for one partition and there is no
lazy merging operation for two partitions.

To summarize, both data partitioning and lazy merging
have been proven effective and can significantly reduce the
computation time even using single thread.

8.4 Effect of Parallelism
In this subsection, we demonstrate the speedup of our pro-
tocol by using multithreading (local parallelism) on inde-
pendent and identically distributed random datasets with
512 points and distributed computing with 64 commercial
desktops (global parallelism) on independent and identi-
cally distributed random datasets with 65536 points.

As shown in Fig. 11, if we use one machine with up to
4 threads, the protocol almost shows a linear speedup. As the
number of threads doubles, the computation time reduces to
half. However, as we further increase the number of threads,
we only see sub-linear speedup. We believe this is due to the
small size of the dataset. In distributed computation experi-
ments, we employed 4, 8, 16, 32, 64, and 128 threads, respec-
tively. It is clear that at the beginning the protocol shows a
linear speedup. While the number of threads reaches 64, it
switches to sub-linear speedup again due to the small size of
dataset. In both local and global parallelism, we observe that
the difference between with lazy merging and without lazy
merging is too small to be observed. In other words, whenwe
have enough computation power, lazymerging provides lim-
ited improvement, which is opposite towhat we see in single-
thread experiment.

9 CONCLUSIONS

In this paper, we proposed a fully secure skyline protocol
on encrypted data using two non-colluding cloud servers

Fig. 9. Theoretical and experimental results.

Fig. 10. Computation time with and without lazy merging.

Fig. 11. Local parallelism and global parallelism.
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under the semi-honest model. It ensures semantic security
in that the cloud servers knows nothing about the data
including indirect data patterns, query, as well as the query
result. In addition, the client and data owner do not need to
participate in the computation. We also presented a secure
dominance protocol which can be used by skyline queries
as well as other queries. Furthermore, we demonstrated
two optimizations, data partitioning and lazy merging, to
further reduce the computation load. Finally, we presented
our implementation of the protocol and demonstrated the
feasibility and efficiency of the solution. As for future work,
we plan to optimize the communication time complexity to
further improve the performance of the protocol.
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