GL-Cache: Group-level learning for efficient and high-performance caching

*Carnegie Mellon University,

Juncheng Yang*, Ziming Mao^{\$}, Yao Yue[@], K. V. Rashmi* ^{\$}Yale University, [@]Pelikan Foundation

What location are they going?

Grouping and the context make prediction easier!

Carnegie Mellon Parallel Data Laboratory

Images generated by DALL · E

Introduction Ubiquitous caching

- Different types of caches
 - Block/page cache
 - Key-value cache
 - Object cache (CDN cache)
- Different deployments
 - Data center
 - PC/mobile phone

Introduction

Metrics of a cache system

- Efficiency
 - Measured by hit/miss ratio

- Performance
 - Measured by requests/sec

Carnegie Mellon Parallel Data Laboratory

learned cache

Introduction Learned caches

maintain two sets of metadata is expensive and complex delayed reward

Carnegie Mellon Parallel Data Laboratory

Learning from simple experts (e.g., LeCaR^[1])

Introduction Learned caches

which one to evict?

Carnegie Mellon Parallel Data Laboratory

Learning from distribution (e.g., LHD^[2])

can only use limited number of features => low efficiency upper bound require sampling many objects to compare at each eviction => low throughput

Introduction Learned caches

which one to evict?

leverage more features than other learned caches sampling and inference at each eviction => very very very slow

Carnegie Mellon Parallel Data Laboratory

Object-level learning (e.g., LRB^[3])

GL-Cache: a group-level learned cache

Newidea

Carnegie Mellon Parallel Data Laboratory

Group-level Learning (this work)

utilizes multiple features, while amortizes overheads groups accumulate more information and are easier to learn

GL-Cache architecture

Design decision

- How does GL-Cache group objects
- What does GL-Cache learn
- How does GL-Cache learn
- How does GL-Cache evict

Carnegie Mellon Parallel Data Laboratory

11

How does GL-Cache group objects **Insertion-time-based grouping**

- Why?
 - objects inserted at similar time are similar
 - simple and generally applicable
 - can be implemented on segment/log-structured storage
- But other grouping can also be supported

What does GL-Cache learn A new utility function

Which group is a better eviction candidate?

- Quantify the usefulness of object groups
- Properties desired
 - smaller object -> larger utility
 - sooner-to-be-accessed -> larger utility
 - group size one -> Belady's MIN (weighted by size)
 - easy and accurate to track online

Carnegie Mellon Parallel Data Laboratory

object utility at time t $U_o(t) = \frac{1}{T_o(t) \times s_o}$ group utility $U_{group}(t) = \sum_{o \in group} \frac{1}{T_o(t) \times s_o}$

 $T_o(t)$ time till next request since t object size So * requires future information

How does GL-Cache learn **Features and model**

- Dynamic
 - #requests
 - #active objects

- Static

 - mean object size
 - age
- Model: gradient boosting tree with regression as the objective

Carnegie Mellon Parallel Data Laboratory

• write rate at insertion time • miss ratio at insertion time • request rate at insertion time

How does GL-Cache use the model Inference

rank	8 F a	object group
	4 F_c	
	2 F d	
	•••	
	3 Fe	object group

each ranking result is used to evict a fraction of groups pick the group with the lowest utility and the groups inserted after it

GL-Cache evaluation

Evaluation setup

- Traces
 - 103 Cloudphysics traces
 - I4 MSR traces
 - I Wikipedia trace
- Micro-implementation based on libCacheSim
 - LRU, CACHEUS, LHD, LRB
- Prototype implemented from Segcache
 - Cachelib (LRU), LHD, TinyLFU

Carnegie Mellon Parallel Data Laboratory

- Two modes of GL-Cache:
 - GL-Cache-E, GL-Cache-T

• Metrics

- hit ratio increase over FIFO
- throughput relative to FIFO

17

Evaluation setup

- Traces
 - 103 Cloudphysics traces
 - I4 MSR traces
 - I Wikipedia trace
- Micro-implementation based on libCacheSim
 - LRU, CACHEUS, LHD, LRB
- Prototype implemented from Segcache
 - Cachelib (LRU), LHD, TinyLFU

Carnegie Mellon Parallel Data Laboratory

- Two modes of GL-Cache:
 - GL-Cache-E, GL-Cache-T

• Metrics

- hit ratio increase over FIFO
- throughput relative to FIFO

18

Efficiency

GL-Cache-E is slightly better than state-of-the-art algorithms GL-Cache-T is close to LRB

Throughput GL-Cache-E is faster than all state-of-the-art learned caches GL-Cache-T is **significantly** faster

open-sourced at https://github.com/thesys-lab/fast23-GLCache

Carnegie Mellon Parallel Data Laboratory

Question?

Learning from simple experts (e.g., LeCaR)

Learning from distribution (e.g., LHD)

Object-level learning (e.g., LRB)

Group-level Learning (this work)

juncheny@cs.cmu.edu https://junchengyang.com

