GL-Cache: Group-level learning for
efficient and high-performance caching

Juncheng Yang*, Ziming Mao?®, Yao Yue@, K. V. Rashmi*

*Carnegie Mellon University, $Yale University, @Pelikan Foundation

Carnegie
Mellon

University

What location are they going?

Grouping and the context make
prediction easier!

Images generated by DALL - E

Carnegie Mellon 5
Parallel Data Laboratory

Introduction

Ubiquitous caching

MEMCACHED

* Different types of caches
* Block/page cache

* Key-value cache
* Obiject cache (CDN cache)

* Different deployments

* Data center
* PC/mobile phone

SAMSUNG

Carnegie Mellon
Parallel Data Laboratory

Introduction

Metrics of a cache system

 Efficiency
* Measured by hit/miss ratio

e Performance

* Measured by requests/sec Ie arn ed cacC h e

Carnegie Mellon
Parallel Data Laboratory

l“tf()d“Cti()n k Learning from simple experts (e.g., LeCaRI")

Learned caches

which one to evict!

expert | expert 2

maintain two sets of metadata is expensive and complex
delayed reward

Carnegie Mellon 5 [1] Vietri, Giuseppe, et al. "Driving Cache Replacement with ML-based LeCaR." HotStorage. 2018.
Parallel Data Laboratory

l“tf()d“Cti()n - Learning from distribution (e.g., LHDI[2])

Learned caches

which one to evict!

g

Request probability

Age

can only use limited number of features == low efficiency upper bound
require sampling many objects to compare at each eviction == low throughput

Carnegie Mellon 6 [2] Beckmann, Nathan, et al. "LHD: Improving Cache Hit Rate by Maximizing Hit Density." NSDI.2018.
Parallel Data Laboratory

l“tl‘()d“Cti()n . Object-level learning (e.g., LRBI3I)

Learned caches

which one to evict!

QQ‘ ¢ a2

O‘ O (features)
(:) (: features)

features

leverage more features than other learned caches
sampling and inference at each eviction => very very very slow

Carnegie Mellon v [3] Song, Zhenyu, et al. "Learning relaxed belady for content distribution network caching." NSDI 2020.
Parallel Data Laboratory

GL-Cache: a group-level
learned cache

Newidea

Group-level Learning (this work)

object groups

utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn

Carnegie Mellon s

Parallel Data Laboratory

GL-Cache architecture

training

update model

object group sample
—_—

object group @

rank groups

-T1
|
|
|

F full empty for eviction AR model
— /\
F feature cache . UL inference

Carnegie Mellon
Parallel Data Laboratory

10

Design decision

* How does GL-Cache group objects
 What does GL-Cache learn
 How does GL-Cache learn

 How does GL-Cache evict

Carnegie Mellon

Parallel Data Laboratory

1

How does GL-Cache group objects

Insertion-time-based grouping

* objects inserted at similar time are similar

» simple and generally applicable
* can be implemented on segment/log-structured storage

* But other grouping can also be supported

Carnegie Mellon .

Parallel Data Laboratory

What does GL-Cachelearn

A new utility function

Which group is a better eviction candidate?

* Quantify the usefulness of object groups U (1) = 1
* Properties desired ’ I,(1) X s,
* smaller object -> larger utility group utility
* sooner-to-be-accessed -> larger utility Ui roup(t) = Z
: , . . I (1) Xs,
* group size one -> Belady’s MIN (weighted by size) 0Egroup
* easy and accurate to track online To(t) time till next request since t

So object size
* requires future information

Carnegie Mellon .

Parallel Data Laboratory

How does GL-Cache learn

Features and model

Q@ Oe0e0 000000000000 O@O -

o Dynamic e Static
* #requests * write rate at insertion time

* f#active objects * mIiSsS ratio at insertion time contextual features

* request rate at insertion time
* mean object size
* age

* Model: gradient boosting tree with regression as the objective

Carnegie Mellon

Parallel Data Laboratory

14

How does GL-Cache use the model

Inference

2 evict _evict |6l

2 evict 0}

Ul evict
1

8| Fa object group

eVvICt

l select based on —
size - age

F

21 object group

each ranking result is used to evict a fraction of groups
pick the group with the lowest utility and the groups inserted after it

Carnegie Mellon =
Parallel Data Laboratory

GL-Cache evaluation

Evaluation setup

* Traces

* 103 Cloudphysics traces
* |4 MSR traces
* | Wikipedia trace

 Two modes of GL-Cache:
* GL-Cache-E, GL-Cache-T

* Micro-implementation based on libCacheSim * Metrics

. LRU, CACHEUS, LHD, LRB * hit ratio increase over FIFO

* throughput relative to FIFO
* Prototype implemented from Segcache

» Cachelib (LRU), LHD, TinyLFU

Carnegie Mellon -

Parallel Data Laboratory

Evaluation setup

* Traces

* 103 Cloudphysics t
oudphysics traces Two modes of GL-Cache:

* GL-Cache-E, GL-Cache-T

* Micro-implementation based on libCacheSim * Metrics

e LRU CACHEUS. LHD. LRB * hit ratio increase over FIFO
* throughput relative to FIFO

Carnegie Mellon .

Parallel Data Laboratory

Efficiency

GL-Cache-E is slightly better than state-of-the-art algorithms

GL-Cache-T is close to LRB

@
L
Ll
1.0
@)
Q
Vp
O
v
u 0.5
<
O
1
©
= 0.0
T

O
BN = 1.00 —
small cache - H- large cache
i v 1
>0.75 -
0,
o
% 0.50
= i
T =
o 0.25
©
e e £0.00l = & , ,
D SV ¥ AT) S) A
Co o Lo o Y (P
O\ O

19

Throughput

GL-Cache-E is faster than all state-of-the-art learned caches
GL-Cache-T is significantly faster

-
o
©
|

-
o
©

% 2
™ + i i Il
20.75 £0.75 L.
> i >
o ©
$0.50 + ©0.50 -
2 2 1
%0.25 —1— e %)0.25 —— BB
= = = 3 — T
EO 00 - small cache EO 00 + large cache
| ' e ' < X | O O ' e X
\?‘0 QY\Q\) \X\O \?\% © v O \ c,\\e\) \/\3\0 \’Q\% X x©
(o) (o) °
< o " < & o

20

Summary

Question?

object-level group-level learning
learning

4y
.....
L J
L J
&

Learning from simple experts (e.g., LeCaR)

L &

learning from
distribution Learning from distribution (e.g., LHD)

learning from Object-level learning (e.g., LRB)

simple experts better :
Group-level Learning (this work)

Potential efficiency (hit ratio)

Throughput

: juncheny(@cs.cmu.edu
open-sourced at https://github.com/thesys-lab/fast23-GLCache https://junchengyang.com

Carnegie Mellon o

Parallel Data Laboratory

mailto:juncheny@cs.cmu.edu

Carnegie Mellon
Parallel Data Laboratory

22

