
 GL-Cache: Group-level learning for
efficient and high-performance caching

Juncheng Yang*, Ziming Mao$, Yao Yue@, K. V. Rashmi*
*Carnegie Mellon University, $Yale University, @Pelikan Foundation

Carnegie Mellon
Parallel Data Laboratory

What location are they going?

2

School?No idea

Images generated by DALL· E

EasyHard

Grouping and the context make
prediction easier!

Carnegie Mellon
Parallel Data Laboratory

Introduction

• Different types of caches
• Block/page cache
• Key-value cache
• Object cache (CDN cache)

• Different deployments
• Data center
• PC/mobile phone

Ubiquitous caching

3

Carnegie Mellon
Parallel Data Laboratory

Introduction

• Efficiency
• Measured by hit/miss ratio

• Performance
• Measured by requests/sec

Metrics of a cache system

4

ML

learned cache

Carnegie Mellon
Parallel Data Laboratory

expert 1

Introduction
Learned caches

5

Learning from simple experts (e.g., LeCaR[1])

cache

which one to evict?
dark
green

expert 2

dark
red

maintain two sets of metadata is expensive and complex
delayed reward

[1] Vietri, Giuseppe, et al. "Driving Cache Replacement with ML-based LeCaR." HotStorage. 2018.

Carnegie Mellon
Parallel Data Laboratory

Introduction
Learned caches

6

cache

which one to evict?

can only use limited number of features => low efficiency upper bound
require sampling many objects to compare at each eviction => low throughput

Learning from distribution (e.g., LHD[2])

Age

Re
qu

es
t p

ro
ba

bi
lit

y
[2] Beckmann, Nathan, et al. "LHD: Improving Cache Hit Rate by Maximizing Hit Density." NSDI. 2018.

Carnegie Mellon
Parallel Data Laboratory

cache

which one to evict?

Introduction
Learned caches

7

leverage more features than other learned caches
sampling and inference at each eviction => very very very slow

Object-level learning (e.g., LRB[3])

1features

features

features

features

score

8

4

20

[3] Song, Zhenyu, et al. "Learning relaxed belady for content distribution network caching." NSDI 2020.

GL-Cache: a group-level
learned cache

8

Carnegie Mellon
Parallel Data Laboratory

New idea

9

utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn

Group-level Learning (this work)

100

features

features

features

score

8

20

object groups

…

Carnegie Mellon
Parallel Data Laboratory

…

object groupF

object groupF

 fullF empty

F feature cache

GL-Cache architecture

10

update model

inference

model

training
training

datasample

rank groups
for eviction

Carnegie Mellon
Parallel Data Laboratory

Design decision

• How does GL-Cache group objects

• What does GL-Cache learn

• How does GL-Cache learn

• How does GL-Cache evict

11

Carnegie Mellon
Parallel Data Laboratory

How does GL-Cache group objects

• Why?
• objects inserted at similar time are similar
• simple and generally applicable
• can be implemented on segment/log-structured storage

• But other grouping can also be supported

Insertion-time-based grouping

12

…

Carnegie Mellon
Parallel Data Laboratory

What does GL-Cache learn

• Quantify the usefulness of object groups
• Properties desired

• smaller object -> larger utility
• sooner-to-be-accessed -> larger utility
• group size one -> Belady’s MIN (weighted by size)
• easy and accurate to track online

A new utility function

13

Uo(t) =
1

To(t) × so

object utility at time t

Ugroup(t) = ∑
o∈group

1
To(t) × so

group utility

Which group is a better eviction candidate?

…

To(t) time till next request since t
so object size
* requires future information

Carnegie Mellon
Parallel Data Laboratory

How does GL-Cache learn

• Static
• write rate at insertion time
• miss ratio at insertion time
• request rate at insertion time
• mean object size
• age

Features and model

14

• Dynamic
• #requests
• #active objects

…

} contextual features

• Model: gradient boosting tree with regression as the objective

Carnegie Mellon
Parallel Data Laboratory

How does GL-Cache use the model

each ranking result is used to evict a fraction of groups
pick the group with the lowest utility and the groups inserted after it

Inference

15

Fb

Fc

object groupFe

Fd

object groupFa

rank
select based on 1

size ⋅ age…

1

4

2

3

8

…

merge

evict

Fx

1

4

2

 evict evictFb

 evictFc

 evictFd

GL-Cache evaluation

16

Carnegie Mellon
Parallel Data Laboratory

Evaluation setup

• Traces
• 103 Cloudphysics traces
• 14 MSR traces
• 1 Wikipedia trace

• Micro-implementation based on libCacheSim
• LRU, CACHEUS, LHD, LRB

• Prototype implemented from Segcache
• Cachelib (LRU), LHD, TinyLFU

17

• Two modes of GL-Cache:
• GL-Cache-E, GL-Cache-T

• Metrics
• hit ratio increase over FIFO
• throughput relative to FIFO

Carnegie Mellon
Parallel Data Laboratory

Evaluation setup

• Traces
• 103 Cloudphysics traces
• 14 MSR traces
• 1 Wikipedia trace

• Micro-implementation based on libCacheSim
• LRU, CACHEUS, LHD, LRB

• Prototype implemented from Segcache
• Cachelib (LRU), LHD, TinyLFU

18

• Two modes of GL-Cache:
• GL-Cache-E, GL-Cache-T

• Metrics
• hit ratio increase over FIFO
• throughput relative to FIFO

Carnegie Mellon
Parallel Data Laboratory

Efficiency

19

GL-Cache-E is slightly better than state-of-the-art algorithms
GL-Cache-T is close to LRB

���

��

��
�
��� ��	

���

��

���
�

���

��

���
�

���

���

���

�
���
��
���

���
��
��
��
��
!�
��

�
�

small cache

���
���

��"

�� ���

���
���

���
�

���
���

���
�

����

���	

��	�

��
	

����

�
�!�
��
!��

���
��
��

 �
��
#�

���
��
�

large cache

Carnegie Mellon
Parallel Data Laboratory

Throughput

20

GL-Cache-E is faster than all state-of-the-art learned caches
GL-Cache-T is significantly faster

LRU
Cacheus

LHD LRB

GL-C
ache-E

GL-C
ache-T

0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

small cache

LRU
Cacheus

LHD LRB

GL-C
ache-E

GL-C
ache-T

0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

large cache

Carnegie Mellon
Parallel Data Laboratory

Summary

21

Object-level learning (e.g., LRB)

Learning from distribution (e.g., LHD)

Learning from simple experts (e.g., LeCaR)

Group-level Learning (this work)

Throughput

learning from

distribution

learning from

simple experts

object-level

learning group-level learning

better

Po
te

nt
ia

l e
ffi

ci
en

cy
 (h

it
ra

tio
)

juncheny@cs.cmu.edu
https://junchengyang.comopen-sourced at https://github.com/thesys-lab/fast23-GLCache

Question?

mailto:juncheny@cs.cmu.edu

Carnegie Mellon
Parallel Data Laboratory

22

