GL-Cache: Group-level learning for
efficient and high-performance caching

Juncheng Yang*, Ziming Mao?®, Yao Yue@, K. V. Rashmi*

*Carnegie Mellon University, $Yale University, @Pelikan Foundation

Carnegie
Mellon

University



What location are they going?

Grouping and the context make
prediction easier!
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Introduction

Ubiquitous caching

MEMCACHED

* Different types of caches
* Block/page cache

* Key-value cache
* Obiject cache (CDN cache)

* Different deployments

* Data center
* PC/mobile phone
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Introduction

Metrics of a cache system

 Efficiency
* Measured by hit/miss ratio

e Performance

* Measured by requests/sec Ie arn ed cacC h e
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l“tf()d“Cti()n k Learning from simple experts (e.g., LeCaRI")

Learned caches

which one to evict!

expert | expert 2

maintain two sets of metadata is expensive and complex
delayed reward

Carnegie Mellon 5 [1] Vietri, Giuseppe, et al. "Driving Cache Replacement with ML-based LeCaR." HotStorage. 2018.
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l“tf()d“Cti()n - Learning from distribution (e.g., LHDI[2])

Learned caches

which one to evict!

g

Request probability

Age

can only use limited number of features == low efficiency upper bound
require sampling many objects to compare at each eviction == low throughput

Carnegie Mellon 6 [2] Beckmann, Nathan, et al. "LHD: Improving Cache Hit Rate by Maximizing Hit Density." NSDI.2018.
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l“tl‘()d“Cti()n . Object-level learning (e.g., LRBI3I)

Learned caches

which one to evict!

QQ‘ ¢ a2

O‘ O ( features )
(:) (: features )

features

leverage more features than other learned caches
sampling and inference at each eviction => very very very slow

Carnegie Mellon v [3] Song, Zhenyu, et al. "Learning relaxed belady for content distribution network caching." NSDI 2020.
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GL-Cache: a group-level
learned cache



Newidea

Group-level Learning (this work)

object groups

utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn
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GL-Cache architecture

training

update model

object group sample
—_—

object group @

rank groups
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Design decision

* How does GL-Cache group objects
 What does GL-Cache learn
 How does GL-Cache learn

 How does GL-Cache evict
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How does GL-Cache group objects

Insertion-time-based grouping

* objects inserted at similar time are similar

» simple and generally applicable
* can be implemented on segment/log-structured storage

* But other grouping can also be supported
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What does GL-Cachelearn

A new utility function

Which group is a better eviction candidate?

* Quantify the usefulness of object groups U (1) = 1
* Properties desired ’ I,(1) X s,
* smaller object -> larger utility group utility
* sooner-to-be-accessed -> larger utility Ui roup(t) = Z
: , . . I (1) Xs,
* group size one -> Belady’s MIN (weighted by size) 0Egroup
* easy and accurate to track online To(t) time till next request since t

So object size
* requires future information
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How does GL-Cache learn

Features and model

Q@ Oe0e0 000000000000 O@O -

o Dynamic e Static
* #requests * write rate at insertion time

* f#active objects * mIiSsS ratio at insertion time contextual features

* request rate at insertion time
* mean object size
* age

* Model: gradient boosting tree with regression as the objective
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How does GL-Cache use the model

Inference

2 evict _evict |6l

2 evict 0}

Ul evict
1

8| Fa object group

eVvICt

l select based on —
size - age

F

21 object group

each ranking result is used to evict a fraction of groups
pick the group with the lowest utility and the groups inserted after it
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GL-Cache evaluation



Evaluation setup

* Traces

* 103 Cloudphysics traces
* |4 MSR traces
* | Wikipedia trace

 Two modes of GL-Cache:
* GL-Cache-E, GL-Cache-T

* Micro-implementation based on libCacheSim * Metrics

. LRU, CACHEUS, LHD, LRB * hit ratio increase over FIFO

* throughput relative to FIFO
* Prototype implemented from Segcache

» Cachelib (LRU), LHD, TinyLFU
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Evaluation setup

* Traces

* 103 Cloudphysics t
oudphysics traces  Two modes of GL-Cache:

* GL-Cache-E, GL-Cache-T

* Micro-implementation based on libCacheSim * Metrics

e LRU CACHEUS. LHD. LRB * hit ratio increase over FIFO
* throughput relative to FIFO
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Efficiency

GL-Cache-E is slightly better than state-of-the-art algorithms

GL-Cache-T is close to LRB
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Throughput

GL-Cache-E is faster than all state-of-the-art learned caches
GL-Cache-T is significantly faster

-
o
©
|

-
o
©

% 2
™ + i i Il
20.75 £0.75 L.
> i >
o ©
$0.50 + ©0.50 -
2 2 1
%0.25 —1— e %)0.25 —— BB
= = = 3 — T
EO 00 - small cache EO 00 + large cache
| ' e ' < X | O O ' e X
\?‘0 QY\Q\) \X\O \?\% © v O \ c,\\e\) \/\3\0 \’Q\% X x©
(o) (o) °
< o " < & o

20



Summary

Question?

object-level  group-level learning
learning

4y
.....
L J
L J
&

Learning from simple experts (e.g., LeCaR)

L &

learning from
distribution Learning from distribution (e.g., LHD)

learning from Object-level learning (e.g., LRB)

simple experts better :
Group-level Learning (this work)

Potential efficiency (hit ratio)

Throughput

: juncheny(@cs.cmu.edu
open-sourced at https://github.com/thesys-lab/fast23-GLCache https://junchengyang.com
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