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Introduction

• Different types of caches 
• Block/page cache 
• Key-value cache 
• Object cache (CDN cache)  

• Different deployments 
• Data center 
• PC/mobile phone

Ubiquitous caching
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Introduction

• Efficiency 
• Measured by hit/miss ratio 

• Performance  
• Measured by requests/sec

Metrics of a cache system

4

ML

learned cache



Carnegie Mellon
Parallel Data Laboratory

expert 1

Introduction
Learned caches
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Learning from simple experts (e.g., LeCaR[1])
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maintain two sets of metadata is expensive and complex
delayed reward

[1] Vietri, Giuseppe, et al. "Driving Cache Replacement with ML-based LeCaR." HotStorage. 2018. 
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Introduction
Learned caches
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cache

which one to evict?

can only use limited number of features => low efficiency upper bound
require sampling many objects to compare at each eviction => low throughput

Learning from distribution (e.g., LHD[2])
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[2] Beckmann, Nathan, et al. "LHD: Improving Cache Hit Rate by Maximizing Hit Density." NSDI. 2018.
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cache

which one to evict?

Introduction
Learned caches

7

leverage more features than other learned caches
sampling and inference at each eviction => very very very slow

Object-level learning (e.g., LRB[3])
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[3] Song, Zhenyu, et al. "Learning relaxed belady for content distribution network caching." NSDI 2020.



GL-Cache: a group-level 
learned cache
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New idea
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utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn

Group-level Learning (this work)
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GL-Cache architecture
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Design decision

• How does GL-Cache group objects 

• What does GL-Cache learn 

• How does GL-Cache learn 

• How does GL-Cache evict
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How does GL-Cache group objects

• Why?  
• objects inserted at similar time are similar 
• simple and generally applicable 
• can be implemented on segment/log-structured storage 

• But other grouping can also be supported 

Insertion-time-based grouping
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What does GL-Cache learn

• Quantify the usefulness of object groups  
• Properties desired 

• smaller object -> larger utility 
• sooner-to-be-accessed -> larger utility 
• group size one -> Belady’s MIN (weighted by size) 
• easy and accurate to track online

A new utility function
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Uo(t) =
1

To(t) × so

object utility at time t

Ugroup(t) = ∑
o∈group

1
To(t) × so

group utility

Which group is a better eviction candidate?

…

To(t) time till next request since t 
so     object size
* requires future information
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How does GL-Cache learn

• Static  
• write rate at insertion time 
• miss ratio at insertion time 
• request rate at insertion time 
• mean object size 
• age 

Features and model
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• Dynamic  
• #requests 
• #active objects

…

} contextual features

• Model: gradient boosting tree with regression as the objective
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How does GL-Cache use the model

each ranking result is used to evict a fraction of groups 
pick the group with the lowest utility and the groups inserted after it

Inference
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GL-Cache evaluation
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Evaluation setup

• Traces  
• 103 Cloudphysics traces 
• 14 MSR traces 
• 1 Wikipedia trace 

• Micro-implementation based on libCacheSim 
• LRU, CACHEUS, LHD, LRB 

• Prototype implemented from Segcache 
• Cachelib (LRU), LHD, TinyLFU

17

• Two modes of GL-Cache:  
• GL-Cache-E, GL-Cache-T 

• Metrics 
• hit ratio increase over FIFO 
• throughput relative to FIFO
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• Two modes of GL-Cache:  
• GL-Cache-E, GL-Cache-T 

• Metrics 
• hit ratio increase over FIFO 
• throughput relative to FIFO
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Efficiency
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GL-Cache-E is slightly better than state-of-the-art algorithms
GL-Cache-T is close to LRB
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Throughput
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GL-Cache-E is faster than all state-of-the-art learned caches
GL-Cache-T is significantly faster
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Summary
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Object-level learning (e.g., LRB)

Learning from distribution (e.g., LHD)

Learning from simple experts (e.g., LeCaR)

Group-level Learning (this work)

Throughput
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juncheny@cs.cmu.edu
https://junchengyang.comopen-sourced at https://github.com/thesys-lab/fast23-GLCache

Question?

mailto:juncheny@cs.cmu.edu
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