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Software cache and eviction

e Ubiquitous deployments of software caches
® page cache, block cache, database cache
e key-value cache, object cache...

e Cache metrics:
o efficiency / effectiveness: miss ratio
e throughput and scalability: requests /sec

e A core component of cache design: eviction
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A long history of research centered around LRU

Least-recently-used (LRU)

eager promotion

Efficiency Z S Throughput
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A long history of research centered around LRU

ARC, LIRS, SLRU, MQ, CACHEUS...

more techniques

The higher the better

Efficiency Z S Throughput
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A long history of research centered around LRU

FIFO-Reinsertion, CLOCK variants

less work

The higher the better

Efficiency Z S Throughput
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Can we have the best of both worlds?

System design is often to make right trade-offs

FIFO can be better than LRU

new

observation

The higher the better

Efficiency Throughput
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| RU is baq],
let’s start with FIFO




Why FIFO?

e Many benefits
e fewer metadata
® [ess computation
® more scalable
e flash friendly

The drawback:

FIFO cannot keep popular
objects in the cache
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What does FIFO need?

e Retain popular objects in the cache

e Evict unpopular objects faster

QuIiCcK DEMOTION
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An abstraction of cache

. insertion passive demotion logically ordered queue |
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Existing cache eviction algorithms = cache promotion algorithms!
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An abstraction of cache

passive demotion
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LAZY PROMOTION

Promotion only at eviction
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. promotion only at eviction

Retain popular objects with minimal efforts

e Example: FIFO-Reinsertion/CLOCK
¢ reinserts an object back during eviction if it has been requested

e Higher throughput (than LRU)
e fewer operations
® more scalable

e Higher efficiency (than LRU)
e more information at eviction time
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. promotion only at eviction

Retain popular objects with minimal efforts

Common wisdom We find

CLOCK has Dataset:

e 10 datasets, 5307 traces from 2007-2020

h}(&f # Iowe r e block, key-value, object

MmISsS ratios e 814 billion requests , 55.2 billion objects
than LRU
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LAZY PROMOTION: promotion only at eviction

Retain popular objects with minimal efforts
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QuicK DEMOTION

Quickly remove most new objects
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. quickly remove most new objects

Evict unpopular / short-lived objects faster

® Removing less valuable objects faster is not new
e Remove scan pages/data

e \Why use quick demotion
o /Zipf workloads: unpopular objects are the majority of objects
e Belady evicts unpopular objects faster
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A simple design to illustrate the power

on cache miss
If not in ghost, else

0 /N 2.

struct object { .
, ]
bool visited: FIFO main cache (90% space)

} on eviction
. if not visited, else \j
on cache hit

visited = true *

probationary FIFO quickly removes many new objects
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QD improves ALL state-of-the-art algorithms
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ARC — QD-ARC: up to 59.8% miss ratio reduction
Across all traces, algorithms and sizes, mean miss ratio reduction: 2.7%
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FIFO+ P+ QDis than state-of-the-art

D s QD Original
O = —
= & __ . -
SAR . "
= -
0.2 -
b= S N
- O
() % v \ 4
'CCD k% 0.1 v v
c o
_GC) &U O O - —— — o B Bl
= @ ARC LIRS CACHEUS LHD LeCaR FIFO+LP+QD
=
FIFO + LP + QD:

e more efficient than state-of-the-art
e simple, fast, scalable

A https://jasony.me/slides/hotos23-qdlp.pdf



More lazy promotion and quick demotion techniques

® | AZY PROMOTION . . .. .
o reinsert Design cache eviction algorithms
reINSETon like building LEGOs

® merge (Segcache) -
e periodic (FrozenHot) 335 QD e :FlFO ‘ +' ' LP =S
e batched (CliqueMap) ' ’
e probabilistic

e QuUICK DEMOTION

e small FIFO
® new metric
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Takeaways

FIFO is better than you would have expected

¢ FIFO + LAzYy PROMOTION can be more efficient than LRU
® QuicK DEMOTION enables state-of-the-art efficiency
e Design new eviction algorithms using

FIFO + LAZY PROMOTION + QUICK DEMOTION

simple, fast, scalable, yet efficient |

https://github.com/TheSys-lab/HotOS23-QD-LP
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