FIFO can be better than LRU:

the power of and QuUICK DEMOTION

Juncheng Yang, Ziyue Qiu, Yazhuo Zhang, Yao Yue, K. V. Rashmi

Carnegie
Mellon
University W EMORY Pelikan Foundation
School of UNIVERSITY
. Computer
Carnegie Mellon Science

Parallel Data Laboratory

1 https://jasony.me/slides/hotos23-qdlp.pdf

Software cache and eviction

e Ubiquitous deployments of software caches
® page cache, block cache, database cache
e key-value cache, object cache...

e Cache metrics:
o efficiency / effectiveness: miss ratio
e throughput and scalability: requests /sec

e A core component of cache design: eviction

A

Cachelib

\._“ ‘ ‘7"_.
W 3
= po—
> "% -
! N —
' e
“_' —
£ ca— ;
-\ o) - > -
\ X - a
-l
1 o4

. ©
traffic .server”

* VARNISH

CACHE

£

ALLUXIO

Pelikan

https://jasony.me/slides/hotos23-qdlp.pdf

A long history of research centered around LRU

Least-recently-used (LRU)

eager promotion

Efficiency Z S Throughput

https://jasony.me/slides/hotos23-qdlp.pdf

A long history of research centered around LRU

ARC, LIRS, SLRU, MQ, CACHEUS...

more techniques

The higher the better

Efficiency Z S Throughput

https://jasony.me/slides/hotos23-qdlp.pdf

A long history of research centered around LRU

FIFO-Reinsertion, CLOCK variants

less work

The higher the better

Efficiency Z S Throughput

https://jasony.me/slides/hotos23-qdlp.pdf

Can we have the best of both worlds?

System design is often to make right trade-offs

FIFO can be better than LRU

new

observation

The higher the better

Efficiency Throughput

https://jasony.me/slides/hotos23-qdlp.pdf

| RU is baq],
let’s start with FIFO

Why FIFO?

e Many benefits
e fewer metadata
® [ess computation
® more scalable
e flash friendly

The drawback:

FIFO cannot keep popular
objects in the cache

https://jasony.me/slides/hotos23-qdlp.pdf

What does FIFO need?

e Retain popular objects in the cache

e Evict unpopular objects faster

QuIiCcK DEMOTION

https://jasony.me/slides/hotos23-qdlp.pdf

An abstraction of cache

. insertion passive demotion logically ordered queue |
. " E
""""""""""""""" LLTT T :
y promotion ey,

preference for eviction =—p
head Smovasy tail

Existing cache eviction algorithms = cache promotion algorithms!

= https://jasony.me/slides/hotos23-qdlp.pdf

An abstraction of cache

passive demotion

'\
----------------------------- ¢

' “eager promotion - .t

§ N""sa,

preference for eviction =—p

https://jasony.me/slides/hotos23-qdlp.pdf

LAZY PROMOTION

Promotion only at eviction

e https://jasony.me/slides/hotos23-qdlp.pdf

. promotion only at eviction

Retain popular objects with minimal efforts

e Example: FIFO-Reinsertion/CLOCK
¢ reinserts an object back during eviction if it has been requested

e Higher throughput (than LRU)
e fewer operations
® more scalable

e Higher efficiency (than LRU)
e more information at eviction time

E https://jasony.me/slides/hotos23-qdlp.pdf

. promotion only at eviction

Retain popular objects with minimal efforts

Common wisdom We find

CLOCK has Dataset:

e 10 datasets, 5307 traces from 2007-2020

h}(&f # Iowe r e block, key-value, object

MmISsS ratios e 814 billion requests , 55.2 billion objects
than LRU

& https://jasony.me/slides/hotos23-qdlp.pdf

LAZY PROMOTION: promotion only at eviction

Retain popular objects with minimal efforts
N\ LRU @A CLOCK

0 f—j 1.0 '

Common wisdom We find g = | 1

CLOCK has - E . N
c 503 ¥ \
hixer=p [ower £: §IT0000 "
> O E N Ny ¥ N
miss ratios SE INENJREEX 0N
N — OO AN N . ,_5- N AN
than LRU = X 20Z25885
S VO c=0O08E:

L = =
S22 gI" 2
. T © o
CLOCK (FIFO + LP) is also 3= 0 C o
simpler, faster, and more scalable o g F 9
)

V)

g https://jasony.me/slides/hotos23-qdlp.pdf

QuicK DEMOTION

Quickly remove most new objects

e https://jasony.me/slides/hotos23-qdlp.pdf

. quickly remove most new objects

Evict unpopular / short-lived objects faster

® Removing less valuable objects faster is not new
e Remove scan pages/data

e \Why use quick demotion
o /Zipf workloads: unpopular objects are the majority of objects
e Belady evicts unpopular objects faster

Uz https://jasony.me/slides/hotos23-qdlp.pdf

A simple design to illustrate the power

on cache miss
If not in ghost, else

0 /N 2.

struct object { .
,]
bool visited: FIFO main cache (90% space)

} on eviction
. if not visited, else \j
on cache hit

visited = true *

probationary FIFO quickly removes many new objects

18

https://jasony.me/slides/hotos23-qdlp.pdf

QD improves ALL state-of-the-art algorithms

D s QD Original
O L —
= & - - -
A 2 T
= -
0.2 o
2 S N
- @)
O = v
-g) &) 0.1 v v
c O
Q ke + 1 1 1 - 1
w0 ARC LIRS CACHEUS LHD LeCaR
=

ARC — QD-ARC: up to 59.8% miss ratio reduction
Across all traces, algorithms and sizes, mean miss ratio reduction: 2.7%

s https://jasony.me/slides/hotos23-qdlp.pdf

FIFO+ P+ QDis than state-of-the-art

D s QD Original
O = —
= & __ . -
SAR . "
= -
0.2 -
b= S N
- O
() % v \ 4
'CCD k% 0.1 v v
c o
_GC) &U O O - —— — o B Bl
= @ ARC LIRS CACHEUS LHD LeCaR FIFO+LP+QD
=
FIFO + LP + QD:

e more efficient than state-of-the-art
e simple, fast, scalable

A https://jasony.me/slides/hotos23-qdlp.pdf

More lazy promotion and quick demotion techniques

® | AZY PROMOTION
o reinsert Design cache eviction algorithms
reINSETon like building LEGOs

® merge (Segcache) -
e periodic (FrozenHot) 335 QD e :FlFO ‘ +' ' LP =S
e batched (CliqueMap) ' ’
e probabilistic

e QuUICK DEMOTION

e small FIFO
® new metric

21

https://jasony.me/slides/hotos23-qdlp.pdf

Takeaways

FIFO is better than you would have expected

¢ FIFO + LAzYy PROMOTION can be more efficient than LRU
® QuicK DEMOTION enables state-of-the-art efficiency
e Design new eviction algorithms using

FIFO + LAZY PROMOTION + QUICK DEMOTION

simple, fast, scalable, yet efficient |

https://github.com/TheSys-lab/HotOS23-QD-LP

Acknowledgement https://jasony.me

e (Open-sourced traces juncheny@cs.cmu.edu
e Cloudlab, PDL @1alalia

22

https://jasony.me/slides/hotos23-qdlp.pdf

https://jasony.me
mailto:juncheny@cs.cmu.edu

23

https://jasony.me/slides/hotos23-qdlp.pdf

24

https://jasony.me/slides/hotos23-qdlp.pdf

