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Today’s in-memory caching systems

Have significant room for improvement

• Memory efficiency
- TTL and expiration 

- Huge per-object metadata 

- Memory fragmentation

• Throughput and scalability 
- Tradeoff between efficiency and throughput or scalability 
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TTL and expiration
Time-to-live (TTL) 
• TTL is set during object write 

• Expired objects cannot be served

• Short TTLs are widely used in production 

TTL usages
• Reduce stale data (cache writes are best-effort) 

• Periodic refresh (e.g. ML predictions) 

• Implicit deletions (e.g. limiters, GDPR) 

Impact of TTL 
• Reduce effective working set size 

• Removing expired objects is critical 
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Smaller working set if expired 
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TTL and expiration: takeaway

Timely removal of expired objects is critical for memory efficiency 
• expiration: remove objects that cannot be used in the future 

• eviction: remove objects that could potentially be used in the future 

5



Existing solutions for TTL expiration
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Color: expiration time

How can I find 
expired objects

expire at T T+20

T+9600 T+86400

Category Technique Efficient Sufficient 

Lazy 
expiration 

Delete upon re-access
Check LRU tail

Proactive 
expiration

Scanning

Sampling

Transient object pool

Efficient: low overhead 
Sufficient: can remove all or most expired objects

either not efficient or not sufficient



 Motivation summary
Today’s in-memory caching systems: 

• Memory efficiency
- Cannot efficiently and timely remove expired objects

- Have huge per-object metadata (56 bytes in Memcached), but objects are small (10s-100s bytes)

- Suffer from memory fragmentation 

• Throughput and scalability 
- Tradeoff between efficiency and throughput or scalability
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Segcache: a memory-efficient and scalable 
in-memory key-value cache for small objects 
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Segcache overview

Segcache: segment-structured cache 

High memory efficiency
• Efficient and sufficient TTL expiration 

• Tiny object metadata (5-byte) 

• Almost no memory fragmentation

• Merge-based eviction for low miss ratio

High performance 
• High throughput 

• Close-to-linear scalability 

Expect to enter Twitter production this year 
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Segcache design

TTL buckets object store

segment 1 (S1)

segment 2 (S2)

segment M

…

segment: a small fixed-size log 
storing objects of similar TTLs
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read
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Design principles 



Design principle 1: Maximize metadata approximation and sharing

Group objects into segments to approximate and share metadata 
Segment: a small fixed-size log storing objects of similar TTLs 
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Design principle 2: Be proactive, don’t be lazy
Efficiently and proactively remove expired objects 
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objects in a segment share creation time and TTL
=> expire at the same time 

segments in a chain have same TTL with sorted creation time
=> examine the first segment only

background thread scans TTL buckets (small array of metadata)
=> efficient and proactive expiration

TTL buckets
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Design principle 3: Perform macro management
Manage segments (groups of objects), not objects

Perform less bookkeeping in batched sequential fashion with high throughput 

Achieve a close-to-linear scalability 
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In the paper (not covered in the talk)

• Segment homogeneity 

• Merge-based eviction 

- Approximate and smoothed frequency counter 
๏ Low overhead 
๏ Burst-resistant 
๏ Scan-resistant
๏ Eviction-friendly
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Evaluation

Implemented on Pelikan 
• Twitter’s open-source caching framework

Setup 

• Five systems (research + production) 
- Production 

- Memcached and Memcached + scanning

- LHD + sampling 

- Hyperbolic + sampling 

- Segcache

• Five production traces 
• Twitter production fleet 
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Evaluation: memory efficiency
Reduce memory footprint by 
• 40-90% compared to production

- 60% on Twitter’s largest cache cluster 
• 22-60% compared to state-of-the-art 
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Evaluation: throughput and scalability 
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Memcached+scanning
Memcached   

Segcache     
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Workloads

content

Single-thread 
• similar to production
• up to 40% higher than Memcached 
• significantly higher than the rest

Multi-thread 
• 8x improvement with 24 threads
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Summary 

Segcache: segment-structured cache, groups objects into segments for 

• high memory efficiency and high performance
• Efficient proactive TTL expiration 

• Object metadata reduction using metadata approximation and sharing 

• Almost no memory fragmentation 

• Small miss ratio/memory footprint with merge-based eviction 

• High throughput and high scalability using macro management 
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Traces: https://www.github.com/twitter/cache-trace
Code: https://www.github.com/thesys-lab/segcache
Production code: https://www.github.com/twitter/pelikan

https://www.github.com/twitter/cache-trace
https://www.github.com/thesys-lab/segcache
https://www.github.com/twitter/pelikan


Thank you! 
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