
Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects

Juncheng Yang Yao Yue Rashmi Vinayak
Carnegie Mellon University, Twitter

cache

Memcached

In-memory key-value caches

services

Notification

Tweet

Ad

Rate limiter

Reduce latency
Increase throughput

and scalability
Reduce backend load

backend

RocksDB

MySQL

Tensorflow

Today’s in-memory caching systems

Have significant room for improvement

• Memory efficiency
- TTL and expiration

- Huge per-object metadata

- Memory fragmentation

• Throughput and scalability
- Tradeoff between efficiency and throughput or scalability

3

TTL and expiration
Time-to-live (TTL)
• TTL is set during object write

• Expired objects cannot be served

• Short TTLs are widely used in production

TTL usages
• Reduce stale data (cache writes are best-effort)

• Periodic refresh (e.g. ML predictions)

• Implicit deletions (e.g. limiters, GDPR)

Impact of TTL
• Reduce effective working set size

• Removing expired objects is critical
4

Smaller working set if expired
objects are not considered

TTL and expiration: takeaway

Timely removal of expired objects is critical for memory efficiency
• expiration: remove objects that cannot be used in the future

• eviction: remove objects that could potentially be used in the future

5

Existing solutions for TTL expiration

6

Color: expiration time

How can I find
expired objects

expire at T T+20

T+9600 T+86400

Category Technique Efficient Sufficient

Lazy
expiration

Delete upon re-access
Check LRU tail

Proactive
expiration

Scanning

Sampling

Transient object pool

Efficient: low overhead
Sufficient: can remove all or most expired objects

either not efficient or not sufficient

 Motivation summary
Today’s in-memory caching systems:

• Memory efficiency
- Cannot efficiently and timely remove expired objects

- Have huge per-object metadata (56 bytes in Memcached), but objects are small (10s-100s bytes)

- Suffer from memory fragmentation

• Throughput and scalability
- Tradeoff between efficiency and throughput or scalability

7

MICA MemC3 Memshare LHD Hyperbolic pRedis

Memory efficiency

Throughput/scalability

Segcache: a memory-efficient and scalable
in-memory key-value cache for small objects

object store

segment 1 (S1)

segment 2 (S2)

segment M

…

TTL buckets

TTL

TTL

segment: a small fixed-size log
storing objects of similar TTLs

S1 S3 S4

hash table

bucket info (shared)
object info

TTL

TTL

TTL

S2

S3

read

write
segment chain

TTL ranges

Segcache overview

Segcache: segment-structured cache

High memory efficiency
• Efficient and sufficient TTL expiration

• Tiny object metadata (5-byte)

• Almost no memory fragmentation

• Merge-based eviction for low miss ratio

High performance
• High throughput

• Close-to-linear scalability

Expect to enter Twitter production this year

9

Segcache design

TTL buckets object store

segment 1 (S1)

segment 2 (S2)

segment M

…

segment: a small fixed-size log
storing objects of similar TTLs

S1 S4

TTL

TTL

TTL

TTL

TTL

S2

hash table

bucket info (shared)
object info

S3

read

write segment chain

row: hash bucket

TTL ranges

Design principles

Design principle 1: Maximize metadata approximation and sharing

Group objects into segments to approximate and share metadata
Segment: a small fixed-size log storing objects of similar TTLs

12

metadata data
object

Memcached object store Segcache object store

metadata
segment

hash table

Bucket info (shared)

Design principle 2: Be proactive, don’t be lazy
Efficiently and proactively remove expired objects

13

objects in a segment share creation time and TTL
=> expire at the same time

segments in a chain have same TTL with sorted creation time
=> examine the first segment only

background thread scans TTL buckets (small array of metadata)
=> efficient and proactive expiration

TTL buckets

S1 S4

TTL

TTL

TTL

TTL

TTL

S2

S3

Time-sorted TTL-
indexed segment chain

TTL ranges

Design principle 3: Perform macro management
Manage segments (groups of objects), not objects

Perform less bookkeeping in batched sequential fashion with high throughput

Achieve a close-to-linear scalability

14

1000s - 10,000s objects

S1 S4

TTL

TTL

TTL

TTL

TTL

S2

S3

Segment chain

Only segment chain changes needs locking

Expiration and eviction happen on the segment level

In the paper (not covered in the talk)

• Segment homogeneity

• Merge-based eviction

- Approximate and smoothed frequency counter
๏ Low overhead
๏ Burst-resistant
๏ Scan-resistant
๏ Eviction-friendly

15

Evaluation

Implemented on Pelikan
• Twitter’s open-source caching framework

Setup

• Five systems (research + production)
- Production

- Memcached and Memcached + scanning

- LHD + sampling

- Hyperbolic + sampling

- Segcache

• Five production traces
• Twitter production fleet

16

Evaluation: memory efficiency
Reduce memory footprint by
• 40-90% compared to production

- 60% on Twitter’s largest cache cluster
• 22-60% compared to state-of-the-art

17

content user1 user2 negative multi-tenant
Workloads

Production

LHD + sampling

Memcached

Memcached + scanning

Segcache

Hyperbolic + sampling

Metric: relative cache size to achieve
production miss ratio

lo
w

er
 is

 b
et

te
r

Evaluation: throughput and scalability

18

Memcached+scanning
Memcached

Segcache

user1 user2 negative multi-tenant
Workloads

content

Single-thread
• similar to production
• up to 40% higher than Memcached
• significantly higher than the rest

Multi-thread
• 8x improvement with 24 threads

Production

LHD + sampling

Memcached

Memcached + scanning

Segcache

Hyperbolic + sampling

H
ig

he
r

is
 b

et
te

r

Summary

Segcache: segment-structured cache, groups objects into segments for

• high memory efficiency and high performance
• Efficient proactive TTL expiration

• Object metadata reduction using metadata approximation and sharing

• Almost no memory fragmentation

• Small miss ratio/memory footprint with merge-based eviction

• High throughput and high scalability using macro management

19

Traces: https://www.github.com/twitter/cache-trace
Code: https://www.github.com/thesys-lab/segcache
Production code: https://www.github.com/twitter/pelikan

https://www.github.com/twitter/cache-trace
https://www.github.com/thesys-lab/segcache
https://www.github.com/twitter/pelikan

Thank you!

Acknowledgement: Jack Kosaian from CMU,
Rebecca Isaacs, Xi Wang, Dan Luu, Brian Martin from Twitter,

IOP, cache, HWEng team from Twitter,
Parallel Data Lab at CMU, Siobiosys lab at Emory University.

