
Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, K.V. Rashmi

SIEVE is Simpler than LRU:
An Efficient Turn-Key Eviction Algorithm for Web Caches

Emory University, Carnegie Mellon University, Pelikan Foundation

2

Caching System is Important

Core:
 Eviction Algorithm

Cachelib Pelican

Web Caches

Page Cache

Limited Space!

3

Cache Metrics

Efficiency Cache Miss Ratio

Scalability Reqs/Second

4

Throughput Measured in Cachelib

[OSDI’20] The CacheLib Caching Engine: Design and Experiences at Scale

Twitter workload

5

Throughput Measured in Cachelib

[OSDI’20] The CacheLib Caching Engine: Design and Experiences at Scale

Twitter workload

6

Cache Metrics

Simplicity

Efficiency Cache Miss Ratio

Scalability Reqs/Second

7

A Rich Literature of Eviction Algorithms

LRU-k

TwoQ

SLRU

GDSF

LRFU

LIRS

ARC

MQ

CAR

CLOCK

Tiny-
LFU

LHD

LeCaR

LRB

CACHE
US

GL-
Cache

HALP

1960s 1970s 1980s 1990s 2000s 2010s 2020s

FIFO

LRU

complexity

8

The Trouble with Complexity

•Difficult to debug and maintain

•Difficult to tune the parameters

“Predicting which pages will be accessed
in the near future is tricky, and the kernel
has evolved many mechanisms to improve
its chances of guessing right. But the
kernel not only often gets it wrong, but
also spends a lot of CPU time to make the
incorrect choice.”
-- Linux kernel developer

9

SIEVE: a Simple and Efficient Cache Eviction Algorithm

SIEVE

Efficiency†

Si
m

pl
ic

ity
*

LeCaR LeCaR

TwoQTwoQ
ARCARC

LIRSLIRS
LHD

CACHEUS CACHEUS

LHD

CLOCK

LRU

LRU

CLOCK
LRU

FIFO

* Measured by lines of code
† Measured by average object miss ratio reduction from FIFO

10

SIEVE Design

11

The Secret to Designing Efficient Eviction Algorithms

Lazy promotion

[HotOS’23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP’23] FIFO Queues are all You Need for Cache Eviction

Quick demotion

12

The Secret to Designing Efficient Eviction Algorithms

Lazy promotioninsertion

[HotOS’23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP’23] FIFO Queues are all You Need for Cache Eviction

HEAD TAIL

Retain popular objects with minimal effort
• Improve throughput due to less computation
• Improve efficiency due to more information at eviction

13

`

Quick demotion
insertion

removal

[HotOS’23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP’23] FIFO Queues are all You Need for Cache Eviction

HEAD TAIL

Quickly remove most new objects,
such as one-hit-wonders (no request after insertion)

The Secret to Designing Efficient Eviction Algorithms

14

The Secret to Designing Efficient Eviction Algorithms

Lazy promotion

[HotOS’23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP’23] FIFO Queues are all You Need for Cache Eviction

Retain popular objects with minimal effort

Quick demotion

Lazy promotion

Remove unpopular objects fast, such as one-hit-wonders

15

FIFOinsert evict

LRUinsert evict

promote
Efficiency Scalability

No promotion

No quick demotion

Eager promotion

No quick demotion

16

FIFOinsert evict

FIFO-Reinsertion

reinsert

evictinsert

Efficiency Scalability

LRUinsert evict

promote

No promotion

No quick demotion

Eager promotion

No quick demotion

Lazy promotion

No quick demotion

17

FIFO-ReinsertionD K

visited not visited

18

FIFO-Reinsertion KD

cache hit on D

visited not visited

19
visited not visited

cache miss

FIFO-Reinsertion KD

reinsert & reset visited bit

1

FIFO-ReinsertionDK

evict

2

FIFO-ReinsertionK D

insert

3

20

FIFOinsert evict

FIFO-Reinsertion

reinsert

evictinsert

LRUinsert evict

promote
Efficiency Scalability

No promotion

No quick demotion

Eager promotion

No quick demotion

Lazy promotion

No quick demotion

21

FIFOinsert evict No promotion

No quick demotion

SIEVE

evict

FIFO-Reinsertion

reinsert

evictinsert

insert

Eager promotion

No quick demotion

Efficiency Scalability

LRUinsert evict

promote

Lazy promotion

No quick demotion

22

SIEVED K

visited not visited

23

SIEVE KD

cache hit on D

visited not visited

24

cache miss
reset visited bit & move hand

1 SIEVE KD

visited not visited

SIEVED K2

evict

SIEVED K

insert
3

25

FIFOinsert evict

FIFO-Reinsertion

reinsert

SIEVE

evict

evictinsert

insert

LRUinsert evict

promote
Efficiency Scalability

No promotion

No quick demotion

Eager promotion

No quick demotion

Lazy promotion

No quick demotion

Lazy promotion

26

SIEVED

evict

insert

Quickly remove new objects

27

CLOCK
insert evict

reinsert

SIEVE
insert

evict

“survived” object newly inserted object

[NSDI’21] SegCache: memory-efficient and high-throughput DRAM cache for small objects

Separate new and old objects

28

FIFOinsert evict

FIFO-Reinsertion

reinsert

SIEVE

evict

evictinsert

insert

LRUinsert evict

promote
Efficiency Scalability

No promotion

No quick demotion

Eager promotion

No quick demotion

Lazy promotion

No quick demotion

Lazy promotion

Quick demotion

29

SIEVE Evaluation

30

Web Cache Workloads

1559 traces | 247,017 million requests |14, 852 million objects

trace
collection

collection
time #traces cache

type
request
(million)

object
(million)

CDN1 2021 1273 object 37,460 2,652

CDN2 2018 219 object 3,728 298

Tencent Photo 2018 2 object 5,650 1,038

Wiki CDN 2019 3 object 2,863 56

Twitter KV 2020 54 KV 195,441 10,560

Meta KV 2022 5 KV 1,644 82

Meta CDN 2023 3 object 231 76

• Simulator: libCacheSim
• Prototype: Cachelib
• Testbed: Cloudlab

31

SIEVE: Efficiency SIEVE reduces FIFO’s miss
ratio by more than 42% on
10% of the traces (top
whisker) with a mean of 21%

CDN1, 1273 traces (37,460 million requests)

32

SIEVE: Efficiency

CDN1, 1273 traces (37,460 million requests)

SIEVE achieves the best efficiency
on the well-studied Zipfian workloads

6x

33

SIEVE: Throughput

34

SIEVE: Simplicity

Cache library Language Lines of change

groupcache Golang 21
mnemonist Javascript 12

lru-rs Rust 16
lru-dict Python + C 21

35

SIEVE: Simplicity

Cache library Language Lines of change

groupcache Golang 21
mnemonist Javascript 12

lru-rs Rust 16
lru-dict Python + C 21

Adoption

36

SIEVE: Primitive

TwoQ: LRU + FIFO

ARC: LRU + LRU + 2 ghost queues

LeCaR: LRU + LFU + ML

37

SIEVE: Primitive

TwoQ: LRU + FIFO

ARC: LRU + LRU + 2 ghost queues

LeCaR: LRU + LFU + ML

Replace LRU with SIEVE

38

More in the paper

• Why SIEVE is effective
• Byte miss ratio
• When SIEVE is not effective
• Comparison to ML algorithms

39

SIEVE Adoption

• SIEVE is available in over 20 cache libraries with 10+ programming languages

• Production systems start integrating SIEVE: Pelican, SkiftOS, DragonFly, and etc

40

Takeaway

• Lazy promotion and quick demotion are
key to efficient eviction algorithm

• SIEVE uses a moving hand to 1) retain
popular objects in place, and 2) remove
unpopular objects quickly

• The simplest algorithm with state-of-the-art
efficiency and scalability

https://sievecache.com

Simplicity

ScalabilityEfficiency

SIEVE

https://sievecache.com/

Backup Slides

41

42

FIFO cannot keep popular
objects in the cacheFIFO

insert evict

CLOCK
insert evict

reinsert

ClOCK retains popular
objects by reinserting them

SIEVE retains popular objects by
keeping them in place and quickly

removes unpopular objects by
using a moving hand

SIEVE
insert

evict

No promotion

No quick demotion

Lazy promotion

Lazy promotion

Quick demotion

43

44

45

FIFO CLOCK ARC LIRS LHD CACHE
US

LRU

Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, K.V. Rashmi

SIEVE is Simpler than LRU:
An Efficient Turn-Key Eviction Algorithm for Web Caches

