SIEVE is Simpler than LRU:
An Efficient Turn-Key Eviction Algorithm tor Web Caches

Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigtusson, K.V. Rashmi

Emory University, Carnegie Mellon University, Pelikan Foundation

Caching System is Important

Page Cache

Limited Space!

Cachelib Pelican

Core:
Eviction Algorithm

. ©
traffic .server”

Web Caches

Cache Metrics

Scalability Reqgs/Second ? .

Throughput Measured in Cachelib

Twitter workload

A60-_."LRU
Vp)
© 38
o)
= 40-
5
O
i -
S 20-
O
i
— " g — B—— el ¢ — — — — =4
12 4 8 16

Number of Threads

[OSDI'20] The CachelLib Caching Engine: Design and Experiences at Scale

Throughput Measured in Cachelib

Twitter workload

o)
-

|—&— LRU (optimized)
—3-- LRU

®

Throughput (Mops)

AN
-

N
-

-

12 4 8
Number of Threads

[OSDI'20] The CachelLib Caching Engine: Design and Experiences at Scale

Cache Metrics

Scalability Reqgs/Second f .

Simplicity

A Rich Literature of Eviction Algorithms

1960s 1970s 1980s 1990s 2000s 2010s 2020s

The Trouble with Complexity

® Difficult to debug and maintain

® Difficult to tune the parameters

"Predicting which pages will be accessed

in the near future is tricky, and the kernel
has evolved many mechanisms to improve

its chances of guessing right. But the
kernel not only often gets it wrong, but
also spends a lot of CPU time to make the
incorrect choice.”

-- Linux kernel developer

SIEVE: a Simple and Efficient Cache Eviction Algorithm

O
| RU SIEVE

.k
2
i
Q
i;é) TWOQO

LeCaRO ARC O

LIRSO)
LHD O)
CACHEUS()

Efficiencyt @
*Measured by lines of code

t Measured by average object miss ratio reduction from FIFO

SIEVE Design

The Secret to Designing Efficient Eviction Algorithms

:Q: Lazy promotion

:Q: Quick demotion

[HotOS'23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP'23] FIFO Queues are all You Need for Cache Eviction

11

The Secret to Designing Efficient Eviction Algorithms

\ | v

~

—-—

>~

~ Lazy promotion

Insertion

Retain popular objects with minimal effort
® [mprove throughput due to less computation
® Improve efficiency due to more information at eviction

[HotOS'23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP'23] FIFO Queues are all You Need for Cache Eviction

12

The Secret to Designing Efficient Eviction Algorithms

Insertion

removal

[
..‘
hd .
" n
u
. -
- n
. -
- n
-]
.
Py q
L4
0. *
Sspsmmmnn?®

Quickly remove most new objects,

such as one-hit-wonders (no request after insertion)

[HotOS'23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP'23] FIFO Queues are all You Need for Cache Eviction

13

The Secret to Designing Efficient Eviction Algorithms

Retain popular objects with minimal effort

:Q: Quick demotion

Remove unpopular objects fast, such as one-hit-wonders

[HotOS'23] FIFO queues can be better than LRU: the Power of Lazy Promotion and Quick Demotion
[SOSP’'23] FIFO Queues are all You Need for Cache Eviction

14

insert

Insert

oromote

‘ LRU

evict

Eager promotion

No quick demotion

No promotion

No quick demotion

Efficiency

A b
. 0.0,

*

Scalability

15

insert

Insert

Insert

oromote

‘ LRU

evict

reinsert

‘ FIFO-Reinsertionb

evict

Eager promotion

No quick demotion

No promotion

No quick demotion

Lazy promotion

No quick demotion

Efficiency

A b
. 0.0,

*

Scalability

16

(][] (] (] () FIFO-Reinsertion () () (][] @

. visited O not visited

(@ (] () () FIFO-Reinsertion () () (][] @

. visited D not visited

cache miss

reinsert & reset visited bit

© ()8 ()] (] FIFO-Reinsertion [] (][] () @
2 (]@ () (] FIFO-Reinsertion (][] (][]

evict

Insert

(]« () @ (] FIFO-Reinsertion () () (] () (]
@ isited [] not visited

oromote

‘ |l RU evict

insert

Insert evict

reinsert

Insert ‘FIFO-Reinsertionb evict

Eager promotion

No quick demotion

No promotion

No quick demotion

Lazy promotion

No quick demotion

Efficiency

A b
. 0.0,

*

Scalability

20

oromote

‘ |l RU evict

insert

Insert evict

reinsert

Insert ‘FIFO-Reinsertionb evict

Insert

Eager promotion

No quick demotion

No promotion

No quick demotion

Lazy promotion

No quick demotion

Efficiency

A b
. 0.0,

*

Scalability

21

JOJUO SEve ODDD

08000 s 00008

. visited O not visited

reset visited bit & move hand
@000 sEve OOOD

Insert

SIEVE) ()) (9
3

. visited not visited

Efficiency Scalability

oromote

‘ LRU evict Eager promotion 7//\\(7//\\(7// i

No quick demotion

insert FIFO evict No promotion
No quick demotion

reinsert

P\ . Lazy promotion A A A A A A A
Insert FIFO-Reinsertion evict La a0 FTRHRA

No quick demotion

insert

*
*
%*
%*
%*
%*

Lazy promotion

Insert

25

\ | 7
’Q‘ Quickly remove new objects

mmooglo seE 000000

evict

\ | s
'Q‘ Separate new and old objects

(Gosy’ (@SOD0RORORO000

UU00UUU/eeees.

."survived" object Dnewly inserted object

[NSDI'21] SegCache: memory-efficient and high-throughput DRAM cache for small objects

oromote

‘ |l RU evict

insert

Insert evict

reinsert

Insert ‘FIFO-Reinsertionb evict

Insert

Eager promotion

No quick demotion

No promotion

No quick demotion

Lazy promotion

No quick demotion

Lazy promotion

Quick demotion

Efficiency Scalability

* k¥),
* A A A A A
1. 0.0.0.0.
A__A__A A A A A
KXk 1.0.0.8.¢

Jokkkk okokok

28

SIEVE Evaluation

Web Cache Workloads

1559 traces | 247,017 million requests [14, 852 million objects
® Simulator: libCacheSim

® Prototype: Cachelib irjlclz:ction °°'t'§:§2°" #traces Ct*;,;h: *tr:ﬁﬁli‘cﬁt fm"lﬁfgs
® Testbed: Cloudlab CDN1 2021 1273 object 37,460 2,652
CDN2 2018 219 object 3,728 298
E] E] Tencent Photo 2018 2 object 5.650 1.038
i Wiki CDN 2019 3 object 2,863 56
W L ey | 2020 | 58| kv | tosaar | 10560
[0) 5 i Meta KV 2022 5 KV 1,644 82
Meta CDN 2023 3 object 231 76

30

SIEVE: Efficiency

®

Miss Ratio Reduction
from FIFO

O
1N

O
w

O
N

©
-

O
o

SIEVE reduces FIFO's miss
ratio by more than 42% on

10% of the traces (top
whisker) with a mean of 21%

__

CDNH1, 1273 traces (37,460 million requests)

31

SIEVE: Efficiency

@ 0.41{ |

1 o TTT*

ction

SIEVE achieves the best efficiency
on the well-studied Zipfian workloads

- O_O_TTQTTTT%%%

& N \ o
2 ,g\ \\ &$ Cz\ 0\9 \/ Q)\/

o3 QﬂQ

CDN1, 1273 traces (37,460 million requests)

32

SIEVE: Throughput

®

Throughput (Mops)

@)
-

N
-

N
-

o

|—&— LRU (optimized)

—-- LRU

|=—#— SIEVE

Number of Threads

6Xx

33

SIEVE: Simplicity

Cache library Language Lines of change
groupcache Golang 2
mnemonist Javascript 12

Iru-rs Rust 16
Iru-dict Python + C 2

34

SIEVE: Simplicity

Cache library Language Lines of change
groupcache Golang 2
mnemonist Javascript 12

Iru-rs Rust 16
Iru-dict Python + C 2

Adoption

Large systems: & Pelikan a Nyrki6 @ SkiftOS % DragonFly
&> DNSCrypt-proxy - encrypted -dns-resolver

Cache libraries: §# golang-fifo o js-sieve rust-sieve-cache gj go-sieve
‘ sieve_cache (Ruby) e zig-sieve (Zlg) sieve (Swift)
& sieve (JavaScript) -u- sieve (Elixir) sieve (Nim)
@ sieve-cache (Java) @ sieve (Python) sieve-cache-in-rust

* sieve-cache (JavaScript) gosieve, sieve (typescrpt)

35

SIEVE: Primitive

LeCaR: LRU + LFU + ML
TwoQ: LRU + FIFO

ARC: LRU + LRU + 2 ghost queues

O
N

O
N

0.0- l

Miss Ratio Reduction
from FIFO

SIEVE LeCaR TwoQ

36

SIEVE: Primitive

LeCaR: |LRUH LFU + ML
TwoQ: |LRUH+ FIFO

ARC: |LRUJ|+ LRU + 2 ghost queues

Replace LRU with SIEVE

Miss Ratio Reduction
from FIFO
—
N

= Original

O
N

0.0-

4

replace LRU with SIEVE

SIEVE

LeCaR

waQ

37

More in the paper

e Why SIEVE is effective
® Byte miss ratio
® When SIEVE is not effective

® Comparison to ML algorithms

38

SIEVE Adoption

® SIEVE is available in over 20 cache libraries with 10+ programming languages

® Production systems start integrating SIEVE: Pelican, SkiftOS, DragonFly, and etc

GO

JS @ Swift

ﬂ Ruby

ZIG

@, python @ @

Java

TypeScript

3 Richard Artoul &2
‘ @richardartoul
Turns out Ristretto cache is *async*.. | switched WarpStream's footer

cache from Ristretto to golang-fifo (Sieve algo) and got a 33x reduction
in cache misses and 16% CPU savings...

Cache Loads

L .
@ Richard Artoul | Updated 4 minutes ago

i Z Edit SO0 W
pstream_loading_cache_loader_out { a v
400
% 200
0 T T T L} T T 1 L}] T L}
20:08 20:09 20:10 20:11 20:12 20:13 20:14 20:15 20:16 20:17 20:18 - 20
Tags in sum:warpstream_loading_cache_loader_outcom e{service:warp-agent.env... Avg Max Sum Value
B cache_name:acls ,host:i-0cc491918ccbaf6e? 6e-3 0.10 /
@ cache_name:acls ,host:i-0ddd25eb52bf97b6f 0.01 0.30 /:
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 0.40 /s
B cache_name:cluster,host:i-0ddd25eb52bf97b6f 0.10 /

9:35 PM - Jan 20, 2024 - 17.3K Views

39

Takeaway

® | azy promotion and quick demotion are

key to efficient eviction algorithm

® SIEVE uses a moving hand to 1) retain
popular objects in place, and 2) remove

unpopular objects quickly

® The simplest algorithm with state-of-the-art

efficiency and scalability

@ https://sievecache.com

40

https://sievecache.com/

Backup Slides

Insert evict

Insert evict
-CLOCK
einsert

Insert

Qb evict

No promotion

No quick demotion

Lazy promotion

Lazy promotion

Quick demotion

FIFO cannot keep popular

objects in the cache

CIOCK retains popular

objects by reinserting them

SIEVE retains popular objects by
keeping them in place and quickly
removes unpopular objects by

using a moving hana

42

| head (new) —-[hand] --tail (old) |

FIFO-Resertion / CLOCK

obj = tail

while obj.visited:
obj.visited = false
prev = obj.prev
move obj to head

obj = hand

while obj.visited:
obj.visited = false
skip obj, do nothing
obj = obj.prev

hand = obj.prev

FIFO-Reinsertion Snapshot

o SIEVE Snapshot

| SIEVE [E— |

Evict

y Hand: identify victim "survived" obj [)newly inserted obj

43

Head [GO KMD-- E

F M

mana | BB nround
movement D 1st round sifting go: G
G sifting [y

~) EEDK

B
A

(a) Density of colors indicates inherent object popularity (blue: newly inserted

objects; red: old objects in each round), and the letters represent object IDs.

The first queue captures the state at the start of the first round, and the second
queue captures the state at the end of the first round.

44

45

SIEVE is Simpler than LRU:
An Efficient Turn-Key Eviction Algorithm for Web Caches

Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigtusson, K.V. Rashmi

gﬂll.{(l)%gle Carnegie Mellon

University Parallel Data Laboratory

4¢] EMORY

UNIVERSITY

